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Project Executive Summary 

The objective of the SUM project is to transform current mobility networks towards innovative and novel 
shared mobility systems (NSM) integrated with public transport (PT) in more than 15 European Cities by 
2026, reaching 30 by 2030. Intermodality, interconnectivity, sustainability, safety, and resilience are at the 
core of this innovation. The outcomes of the project offer affordable and reliable solutions considering the 
needs of all stakeholders such as end users, private companies, public urban authorities. 

 

Social Media links: 

@SUMProjectHoEU 

 @SUM Project 

For further information please visit WWW.SUM-PROJECT.EU 

https://twitter.com/SUMProjectHoEU
https://www.linkedin.com/company/sum-project-horizon-europe/?viewAsMember=true
http://www.sum-project.eu/
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Deliverable executive summary 

1.1 Key words 

Multimodality, modal integration, scheduling optimisation, transfer optimisation, trip planning. 

 

1.2 Summary 

The format of deliverable 2.1 is "DEC" (Dissemination, Exploitation, and Communication Activities) type, 
therefore its primary focus should be on raising awareness, sharing knowledge, and outlining future plans 
rather than detailing technical implementation. It consists of (a) this document, which explains the tools 
developed for forecasting demand and availability of shared mobility services and their integration into MaaS 
travel planners, (b) the codebase for the forecasting demand model, and the API development (c) sample 
data for testing the models. The tools will be applied in Rotterdam and Munich, with a modular API developed 
by Siemens for integration into real-world applications. 

 

List of figures 

Figure 1 – Conceptual Framework of Free-Floating Shared Micro-Mobility System Dynamics. Illustrated 
using the CHECK e-scooter service from the Beurs, Rotterdam pilot study. 

Figure 2 – Data collected for Beurs, Rotterdam and Großhadern, Munich pilot studies. 

Figure 3 – Visualization of the target prediction area for Rotterdam Beurs mobility hub. Shows the 
geofencing zone, H3 hexagon, nearby tram stops, and metro entrances. 

Figure 4 – Spatial distribution of daily average pick-up and drop-off demand within the Beurs area and 
central Rotterdam. 

Figure 5 – MVG Bikeshare stations and pickup demand heatmap around Großhadern mobility hub. 

Figure 7a – Integration of Fleet Availability Forecasts into a MaaS Platform for Real-Time User Information. 

Figure 7b – Example of Fleet Availability Prediction Linked to a MaaS Trip Plan. 
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1 List of abbreviations and acronyms 

Acronym Meaning 

API Application Programming Interface 

B2B Business-to-business 

B2C Business-to-Consumer 

EC European Commission 

GA Grant Agreement 

KPI Key Performance Indicator 

MaaS Mobility as a Service 

NSM New Shared Modes 

SUM Seamless Urban Mobility 

WP Work Package 
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2 Purpose of the deliverable 

2.1 Attainment of the objectives and explanation of deviations 

The objectives related to this deliverable have been achieved in full and as scheduled/are on track to be 
fulfilled on schedule. 

 

2.2 Intended audience 
This deliverable is intended for a range of audiences within the SUM project and beyond. Key stakeholders 
include technical partners and developers involved in WP2 and WP3, city representatives and mobility 
planners participating in the Living Labs and Observer Cities, as well as policymakers and researchers 
interested in multimodal mobility integration. The content may also be of interest to MaaS providers, public 
transport operators, and shared mobility companies seeking to enhance real-time service integration within 
urban transport networks. 

2.3 Structure of the deliverable and links with other work 
packages/deliverables  

The primary objectives of T2.1 are to (i) develop and apply short-term forecasting of passenger demand for 
shared-mobility services; (ii) develop and apply short-term forecasting of shared-mobility fleet availability 
models, and; (iii) integrate the first two objectives (i) and (ii) into multimodal travel information provided to 
travellers provisioned as part of a MaaS travel planner.   
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3 Shared fleet availability predictions for multi-
modal trips integration in MaaS 

3.1 The prediction model 

Modelling Goals 

The objective of this task is to enable real-time, data-driven support for Mobility-as-a-Service (MaaS) 
application by developing a short-term forecasting pipeline for shared micro-mobility systems. This involves 
two key modelling steps: (1) Short-term forecasting of passenger demand for the shared micro-mobility 
service, (2) Short-term forecasting of shared-mobility service’s fleet availability based on real time 
information. The predictive modelling framework is designed to be generalizable to different new-and-shared 
micro-mobility services and adaptable to new data received in the future. 

The short-term predictive models trained via NSM services’ historical data will be stored to train the model 
During online application, short-term demand and fleet availability predictions are generated from the trained 
predictors with real-time inputs. These predictions are sequentially integrated into a MaaS multimodal travel 
planner via an API, allowing users to access timely and accurate availability information when planning their 
journeys. 

To ensure suitability for real-world deployment, the predictive models must meet several practical 
requirements. First, they need to be computationally efficient, enabling rapid generation of predictions to 
support frequent updates within the MaaS application. Timely forecasting is essential for delivering accurate 
and up-to-date information to end users. Second, the models should be lightweight and resource-efficient, 
making them easier and more cost-effective to deploy in cloud environments. Simpler model structures 
reduce the engineering effort and costs associated with API integration and ongoing maintenance. Finally, 
as demand and availability patterns are subject to change over time, the models must be easily updatable 
and maintainable. This requires a design that supports regular retraining or fine-tuning using recent data, 
ensuring sustained accuracy with minimal overhead. 

Problem definition: short-term demand and fleet availability forecasting 

• Short-Term Forecasting:  
This refers to the adaptive prediction of shared micro-mobility demand and service availability in 
the near future, using real-time information as input. These forecasts capture the ongoing 
dynamics of the system – such as current service availability and changing weather conditions – 
and are frequently updated to maintain accuracy. Typically, they cover short time intervals (e.g., 
the next 15 minutes to 1.5 hours), enabling responsive and data-driven decision-making for service 
management. 

• Pickup and Drop-off Demand of Shared Micro-Mobility Services: 
o Pickup Demand: The number of vehicles picked up from a specific target area during a 

given time interval. 
o Drop-off Demand: The number of vehicles returned to the same target area during that 

time interval. 

• Fleet availability of Shared Micro-Mobility Services: 
o In practice, the number of available vehicles in a shared micro-mobility system fluctuates 

dynamically due to ongoing pickup and drop-off activities. To account for this uncertainty, 
we represent expected fleet availability as a likelihood estimate. That is, we predict the 
probability that at least one vehicle (e.g., shared bike or e-scooter) will be available for rental 
within a specified area and time interval. This probabilistic measure reflects the system’s 
ability to meet user demand in the near future. 

• Target Area for Forecasting: 
o In free-floating micro-mobility services, a target area is defined as a polygon within the larger 

service region where pickups and drop-offs are tracked.  
o In dock-based services, the target area usually corresponds to a specific station where users 

collect or return vehicles. 
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Demand prediction 

We develop a demand prediction model for both pickups and drop-offs that forecasts how many requests 
are expected within the target service region. Each demand prediction is generated for a specific future 15-
minute intervals, covering the future 15 to 90 minutes ahead (i.e., 1-to-6 time intervals into the future). For 
each time step and each target to be predicted (pickup or drop-off), a dedicated model is trained 
independently for task-specific predictions. 
 
The model enhances its demand forecasting accuracy by incorporating contextual features that capture both 
dynamic environmental influences and recurring usage patterns. One key source of information is weather 
conditions, which significantly impact bike and scooter usage (El-Assi et al., 2017). Previous studies have 
shown that demand tends to drop during cold, rainy, or humid weather, while warm, dry, and sunny conditions 
encourage more trips. In addition to weather, the model also accounts for seasonal and temporal patterns, 
such as the hour of the day and day of the week, which align with common travel behaviours related to 
commuting, leisure, and other routine activities. Additional contextual features, such as Point-of-Interest 
(POIs) and product specific information about the NSM services, can also be incorporated to further enhance 
model performance, depending on the specific use case (Lin et al., 2020). 
 
We adopt XGBoost (Extreme Gradient Boosting) as the predictive model for short-term demand forecasting 
in shared micro-mobility services. XGBoost is a purely data-driven machine learning algorithm that builds an 
ensemble of decision trees optimized through gradient boosting. Its strength lies in its high predictive 
accuracy and robustness across various spatial and temporal settings, as demonstrated in prior studies on 
micro-mobility demand prediction (Schimohr et al., 2023). This makes it particularly suitable for dynamic 
urban environments, where demand patterns can fluctuate rapidly. In addition to its forecasting capabilities, 
XGBoost is highly efficient computationally. It can be quickly trained and deployed, requiring minimal 
processing power, which makes it ideal for real-time applications. Predictions can be generated within 
seconds, enabling frequent updates that support timely decision-making in operational systems. The model 
is also lightweight and easy to maintain, facilitating integration with cloud-based services and APIs. This 
balance of performance and practicality makes XGBoost a well-suited choice for both research and industry 
applications in the context of Mobility-as-a-Service (MaaS). 
 
Upon request, the model generates demand forecasts for the next six-time intervals (covering the next 15 to 
90 minutes). These predictions support real-time operational planning and can be updated frequently as new 
data becomes available. 
 

Availability prediction 

In this task, fleet availability is modelled as the probability that at least one vehicle will be available for a 
passenger arriving at a specific future time interval. Similar to the demand forecasting setup, we train a set 
of six XGBoost regression models for each service region, with each model responsible for predicting one of 
the six future 15-minute intervals (up to 90 minutes ahead). Each model outputs a non-negative value, 
interpreted as the probability (e.g., x%) that a vehicle will be available. This continuous probability can then 
be translated into qualitative availability labels for end-user communication. In our case, we apply a 
thresholding approach: probabilities above 75% are labelled as “Very Likely”, between 50%-75% as “Likely”, 
25%–50% as “Less Likely”, and below 25% as “Unlikely”. 
 
The prediction model incorporates both contextual and operational inputs. Contextual features include time-
related variables (e.g., hour of the day, day of the week) and weather conditions (e.g., temperature, 
precipitation, wind speed, wind gusts). Operationally, fleet availability is influenced by user behaviour – 
specifically, future pickup and drop-off events – and the initial number of available vehicles in the region. 
Therefore, the model takes as input the forecasted pickup and drop-off demand (generated by the demand 
prediction models) along with the starting fleet count, allowing it to dynamically estimate future availability. 

 

Model Hyperparameter Selection 

To optimize model performance, we apply randomized hyperparameter search using 5-fold cross-validation, 
ensuring robust generalization across different data subsets. This approach balances search efficiency with 
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model reliability. The predictive performance of the trained models is evaluated using two standard error 
metrics: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), which provide insight into both 
average prediction accuracy and sensitivity to larger errors. 
 

3.2 Data collection and training the model 

Mobility Hub Selection, Selected NSM, and Data Collection  

Mobility Hub Description – Beurs, Rotterdam 

Located in the heart of Rotterdam, the Beurs Mobility Hub serves as a central node connecting various 
transportation modes and catering to a diverse urban population. Situated near prominent Points of Interest 
(POIs) such as shopping centres, business districts, and cultural venues, it facilitates seamless movement 
for both residents and visitors. Beurs is a pivotal interchange for Rotterdam's public transportation network, 
integrating tram, bus, and metro services.  
 
The area around Beurs is equipped with dedicated bike lanes and designated parking zones for micro-
mobility devices. This infrastructure supports safe and convenient use of bicycles and e-scooters, 
encouraging sustainable urban travel. The hub offers a range of shared mobility options, including bicycles, 
e-scooters, and electric mopeds. These services are provided by operators like Donkey Republic (bicycles), 
Lime (e-bikes), and Check (e-mopeds), enhancing first- and last-mile connectivity for users. 
 
Mobility Hub Description – Großhadern, Munich 

Located in the southwestern district of Hadern in Munich, the Großhadern Mobility Hub serves as a significant 
transportation node for the local community. The area encompasses several popular POIs, notably the 
Klinikum Großhadern, a major hospital affiliated with Ludwig Maximilian University of Munich, and various 
residential neighbourhoods. This hub caters to the mobility needs of both the hospital's staff and visitors, as 
well as local residents. The hub is well-integrated into Munich's public transportation network. The 
Großhadern U-Bahn station, served by the U6 line, provides direct subway access to central Munich and 
other districts. Additionally, multiple bus routes, including lines 56, 266, 268, and 269, connect the area to 
surrounding neighbourhoods and key locations, ensuring comprehensive transit accessibility.  
 
Munich has invested significantly in cycling infrastructure, and Großhadern benefits from this commitment. 
The district features dedicated bike lanes that promote safe and efficient cycling. Secure bicycle parking 
facilities are available near public transport stations, encouraging the combination of cycling with other modes 
of transit. Currently, the Großhadern area offers various shared mobility services to enhance connectivity 
and provide flexible transportation options. These services include bike-sharing program by Münchner 
Verkehrsgesellschaft (MVG)/SVM, facilitating convenient short-distance travel within the district. 
 
Collaborated New-and-Shared Micro-Mobility Services 

• Beurs, Rotterdam – CHECK shared e-scooter service 
o NSM Service Information: CHECK is a privately-owned shared e-scooter service provider 

that has been active in Rotterdam since June 2020. Operating under a free-floating model, 
the service allows users to rent and return scooters anywhere within the designated service 
area. CHECK runs 24/7 and is fully app-based to offer a seamless rental experience. 
Additionally, the service has been connected to the RET (Rotterdam’s local public transport 
provider) app, enabling users to view nearby CHECK scooters available for pickup via the 
map function. The pricing of CHECK includes a base unlock fee followed by a per-minute 
usage rate, making it a flexible and convenient last-mile mobility option for urban travellers. 

 
Figure 1 below illustrates the interaction between user demand and service operations in a 
free-floating shared micro-mobility system. From the user perspective, environmental factors 
– such as weather, public transit access, and nearby POIs – influence trip requests and the 
distribution of fleet in the city. From the service provider’s perspective, tracking how pick-up 
and drop-off events dynamically affect fleet availability is crucial. When supply is insufficient 
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and no vehicles are available, user demand goes unmet, leading to a poor user experience 
and potentially discouraging long-term use of the service. 

 

Figure 1 Conceptual Framework of Free-Floating Shared Micro-Mobility System 
Dynamics. Illustrated using the CHECK e-scooter service from the Beurs, Rotterdam pilot 

study. 

 
o Received NSM Data: The data we received from CHECK covers activities related to the 

Beurs area between 12 January 2022 and 30 January 2024. It includes historical trip data 
for trips where the pickup or drop-off occurred within the Beurs area. Each record contains 
the vehicle ID, starting and ending datetimes and coordinates, and a description specifying 
whether the trip started or ended at Beurs. Additionally, we received historical fleet 
availability snapshots, taken once per hour, each capturing the snapshot datetime along with 
detailed information on idle vehicles, including their locations and remaining battery levels. 
This dataset enables focused forecasting analyses of user demand and fleet availability for 
the CHECK service within the Beurs area. 

o Supporting information: To analyse overall public transit demand in Rotterdam, RET 
provided historical origin-destination data for all public transit stops and stations connected 
to the Beurs mobility hub, where Beurs serves as either the trip origin or destination. The 
data includes hourly aggregated trip counts from the same historical period as the NSM 
dataset. Additionally, historical weather data was retrieved via the open-source API Open-
Meteo[i] to support demand forecasting. Point-of-Interest (POI) data was also collected for 
the Beurs mobility hub area to better understand its functionality and the factors influencing 
local travel demand. 

 
[i]Open-Meteo: an open-source historical weather data API, https://open-meteo.com/ 

  

• Großhadern, Munich – MVG/SVM Bikeshare service 
o NSM Service Information: MVG Bikeshare (MVG Rad) is Munich's public bike-sharing 

service, operated by Münchner Verkehrsgesellschaft (MVG). The system offers bike rental 
service throughout the city centre of Munich and its suburb districts, including Großhadern. 
Bikes are available 24/7 and can be accessed via the MVGO app, which displays nearby 
bikes available for rental. The standard rate is €0.09 per minute, with a daily maximum of 
€12. Students at participating universities and IsarCard (Munich’s regular public transit pass) 
subscribers benefit from discounted rates. The service operates on a hybrid model, with both 

https://open-meteo.com/
https://open-meteo.com/
https://onlyoffice-app.inria.fr/7.0.1-37/web-apps/apps/documenteditor/main/index.html?_dc=7.0.1-37&lang=en&customer=ONLYOFFICE&frameEditorId=placeholder&parentOrigin=https://mybox.inria.fr#_edn1
https://onlyoffice-app.inria.fr/7.0.1-37/web-apps/apps/documenteditor/main/index.html?_dc=7.0.1-37&lang=en&customer=ONLYOFFICE&frameEditorId=placeholder&parentOrigin=https://mybox.inria.fr#_ednref1
https://open-meteo.com/
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fixed stations and free-floating options, allowing users to return bikes either to designated 
stations or within specified areas. 

o Received NSM Data: For the Munich case study centred around the Großhadern mobility 
hub, various datasets were collected to support the analysis of shared micro-mobility and 
public transit demand. From the MVG shared mechanical bike service, trip data was 
obtained to assess usage patterns. The raw trip data contains one dataset for each station 
within area of interest per day between 2022-06-01 and 2023-10-31. Number of bikes 
available is only present for dates after 2023-01-01.  

o Supporting information: In terms of public transportation, aggregated hourly check-in and 
check-out data were collected, along with estimated passenger counts at the vehicle level, 
capturing both boarding and alighting activity. Additionally, weather data and Point-of-
Interest (POI) information for the surrounding area were gathered to better understand 
contextual factors influencing travel behaviour. 

 
Figure 2 below summarizes all the data collected for Beurs, Rotterdam and Großhadern, Munich pilot 
studies.

 
Figure 2 Data collected for Beurs, Rotterdam and Großhadern, Munich pilot studies. 

 

Short-term Forecasting Model Calibration for Rotterdam Living Lab 

Geographical area division (hexagons) 

• H3 indexing: In the Rotterdam case study, the CHECK shared e-scooter service operates under a 
free-floating model. To analyse fleet availability around the selected mobility hub Beurs, we first 
divide the service area into predefined geographical units using the H3[i] spatial indexing method. 
This method partitions the map into hexagonal cells at a specified resolution. For this case study, we 
use H3 resolution level 9, which corresponds to cells covering approximately 0.74 square kilometres 
each, with an edge length of about 174 meters. 

• Facilities - NSM Parking and Nearby Public Transit Services: The Rotterdam Beurs mobility hub 
is well-connected with both metro and tram public transit services, providing convenient access to 
and from the NSM Parking facility. As shown in Figure 3, several tram stops (blue) and metro 
exits/entrances (red) are located within a short walking distance around Beurs. The target H3 
hexagon (gray) highlights the core coverage area, while the surrounding green geofencing zone 
represents the planned mobility management area for 2025. Together, these facilities ensure 
seamless multimodal connections, supporting efficient first- and last-mile travel for users accessing 
NSM Parking and the broader Beurs area. 

 
[i]Uber H3 indexing system, https://h3geo.org/  
  

https://onlyoffice-app.inria.fr/7.0.1-37/web-apps/apps/documenteditor/main/index.html?_dc=7.0.1-37&lang=en&customer=ONLYOFFICE&frameEditorId=placeholder&parentOrigin=https://mybox.inria.fr#_edn1
https://onlyoffice-app.inria.fr/7.0.1-37/web-apps/apps/documenteditor/main/index.html?_dc=7.0.1-37&lang=en&customer=ONLYOFFICE&frameEditorId=placeholder&parentOrigin=https://mybox.inria.fr#_ednref1
https://h3geo.org/
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Figure 3 Visualization of the target prediction area for Rotterdam Beurs mobility hub. It shows the current geofencing 
zone (green polygon), the target H3 hexagon covering Beurs (gray), nearby tram stops (blue dots), and metro 
exits/entrances (red dots). 

The maps in Figure 4 show the daily average pickup (left) and drop-off (right) demand per H3 grid cell within 
the Beurs mobility hub area (highlighted as the target h3 grid) and other grids in the central area of Rotterdam. 
Colour intensity indicates the magnitude of demand, with darker shades representing higher average trip 
counts. Compared to other grids on the map, the Beurs H3 grid exhibits the highest daily average pick-up 
and drop-off demand in the analysed area of Rotterdam. 

 
Figure 4. Spatial distribution of daily average pick-up and drop-off demand within the Beurs area, and the center of 
Rotterdam areas 

 

Data Pre-processing and Model training 

 In this task, the real-time forecasting API focuses exclusively on predicting demand and availability within 
the target H3 grid covering the Beurs mobility hub area, although the same functionality can be extended to 
other grids of Rotterdam in the future. To enable model training, historical trip data, fleet availability records, 
and weather information are first pre-processed using the procedure outlined below. 

• Historical trip data: The raw trip data is first separated into two datasets, pick-up and drop-off records, 
each capturing the corresponding activity over time. These records are then filtered to retain only 
those that occurred within the target H3 grid, based on the geographic coordinates of the pickup or 
drop-off location. A 15-minute interval time series is created for each H3 grid by aggregating trip 
counts within each time window, covering the historical period from January 22, 2022, 00:00–00:15 
to January 30, 2024, 23:45–00:00. 
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• Fleet availability data: The original fleet availability data consists of hourly snapshots showing the 
number of idle scooters across the Rotterdam area. To extract availability for the Beurs mobility hub, 
we identify the number of idle vehicles located within the target H3 grid at each snapshot time. To 
capture fleet dynamics at a finer temporal resolution, historical pickup and drop-off records are used 
to reconstruct the sequence of events affecting fleet size within the grid. This approach allows us to 
estimate the fleet size at 15-minute intervals throughout the historical period. For each interval, we 
compute the percentage of time that at least one scooter was available, called ‘availability likelihood’. 
This value is then used as the target variable for fleet availability forecasting. 

• Weather data for the Beurs mobility hub area was retrieved from the Open-Meteo API, with hourly 
updates covering the entire historical period. 
 

In the Rotterdam pilot study, fleet availability is predicted for the next 90 minutes in 15-minute intervals (six 
steps ahead). As outlined in the model design, pick-up and drop-off demand predictors are first trained to 
forecast demand for each interval. These predictions, combined with weather data (temperature, wind 
speed, and precipitation), are then used to estimate future fleet availability at the Beurs mobility hub. The 
models are trained on the first 554 days of data, representing approximately 75% of the total dataset. The 
remaining 185 days (25%) are used for validation, covering the final portion of the study period. 
 

Predictive Model Performance: Short-Term Demand and Fleet Availability Forecasting  

The forecasting models are validated on the testing dataset, with emphasis on both predictive accuracy and 
computational speed. Validation results show that all models can generate next-step predictions in under 0.1 
second, demonstrating the ultra-fast response time necessary for real-time forecasting applications. 

For the Beurs mobility hub’s target H3 grid, the average MAE for future pickup demand forecasting is 0.195, 
and the RMSE is 0.416 across all future time intervals for the 6-step ahead forecasting tasks. For drop-off 
demand, the average MAE is 0.756 and RMSE is 0.971, indicating that drop-off demand is slightly more 
challenging to predict accurately within the same forecasting framework. Implementing SHAP for feature 
importance analysis, we find the model consider temporal seasonal features ‘hour-of-the-day’ and ‘day-of-
the-week’ to be the most important input features, followed by the weather features.  

For availability likelihood forecasting, predicted demand values from the trained pickup and drop-off models 
are first used as inputs to the fleet availability predictor. Combined with the initial fleet size in the target grid, 
the model delivers high-accuracy predictions. For the 1st through 6th step-ahead forecasts (in 15-minute 
intervals), the MAEs are 4.352%, 7.918%, 10.361%, 11.017%, 11.900%, and 12.115%, respectively. 
Corresponding RMSEs are 11.691%, 18.450%, 22.325%, 23.185%, 24.833%, and 25.026%. A SHAP-based 
feature importance analysis shows that the initial fleet size is the most influential input, followed by drop-off 

and then pickup demand predictions.  

 

Short-Term Forecasting Model Calibration for Munich Living Lab 

The predictive framework used in the Rotterdam case can be extended to the Munich pilot study at the 
Großhadern mobility hub. For the shared mobility component, trip data from MVG’s shared mechanical bike 
service provides the basis for modelling pick-up and drop-off demand. Figure 5 displays a heatmap of pick-
up demand in Großhadern over the data period, with the two MVG Bikeshare stations highlighted. The station 
located at the top of the map offers 10 parking spaces, while the bottom station is larger, with 15 parking 
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spaces and historically a higher available fleet size. 

 

Figure 5 MVG Bikeshare stations and pickup demand heatmap around Großhadern mobility hub. 

As in Rotterdam, the Großhadern mobility hub area can be divided into a group of H3 hexagonal grids, with 
each grid serving as a spatial unit for generating demand and availability forecasts. To enrich model inputs, 
weather data and Point-of-Interest (POI) information for the Großhadern area can be incorporated to capture 
contextual factors influencing mobility behaviour. After pre-processing the trip and contextual data into 
consistent time series formats (e.g., 15-minute), predictive models can be trained following the same 
approach used in Rotterdam, leveraging the designed multivariate XGBoost predictive framework. Once 
trained, the models can be deployed for real-time inference via Siemens Mobility API, enabling timely and 

location-specific forecasts in Großhadern mobility hub.  

 

3.3 Model integration into API, including architecture 

To enable real-time access to the short-term fleet availability predictions developed by TUD, Siemens 
designed and implemented a robust API infrastructure that integrates the trained predictive models into a 
scalable and responsive backend environment. The core objective of this API layer is to serve fleet availability 
forecasts – updated every 15 minutes – directly to front-end applications such as the MaaS travel planner. 
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The API architecture follows a modular, cloud-based design, allowing for seamless interaction between 
prediction services, data pipelines, and client applications. As illustrated in the figure above, the pipeline 
comprises two main stages: data-driven model learning and real-time API implementation. 

API Architecture Overview 

Backend services are responsible for ingesting real-time data (datetime, weather, fleet availability), running 
the predictive models trained by TUD, and storing the resulting availability forecasts per grid. 

Prediction endpoints expose the fleet availability estimates via Rest APIs. These endpoints return, for each 
15-minute interval and geographic grid: 

• the availability prediction 

• the timestamp of forecast validity 

The request flow begins when a user interacts with the MaaS front-end, for example through the MaaS app, 
and initiates a travel request. In response, the travel planner triggers a call to the Siemens-hosted API to 
check for shared fleet availability at relevant locations. The API returns predicted availability values per grid 
and per time interval, specifically the probability that at least one shared vehicle will be available. These 
predictions are then used by the MaaS planner to refine route suggestions and present the user with an up-
to-date, multimodal travel plan that includes shared mobility options where applicable. 

The first implementation of the API and integration pipeline will be applied in the two living lab cities: 
Rotterdam and Munich. In Rotterdam, the system connects with the CHECK shared e-scooter service and 
integrates into the RET MaaS travel planner. In Munich, it interfaces with the MVG bike-sharing system. 
These two pilots serve as testbeds for validating the performance, scalability, and user value of the real-time 
availability forecasts within active multimodal travel environments. 

3.4 Integration into a MaaS travel planner 

The integration of the fleet availability prediction API into the RET MaaS travel planner involved a series of 
coordinated steps between Siemens and RET. Together, the teams began by defining the relevant mobility 
hubs within the city of Rotterdam, with Beurs selected as the first pilot location. Beurs was chosen due to its 
central position, multimodal connectivity, and active usage of shared mobility services, and therefore enough 
data for the availability predictions. 
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In the RET app, the routing logic is being updated to detect when a user’s travel request passes through or 
terminates at a designated mobility hub such as Beurs. When this condition is met, the app triggers a request 
to the Siemens-hosted API to retrieve predicted availability data for shared mobility services in the 
surrounding area. This real-time information is then used to inform the journey planner, allowing it to prioritize 
and present multimodal routes that include shared options with high availability. Figure 7a illustrates how 
real-time fleet availability likelihood is predicted, integrated into the RET app via API, and presented to 
passengers during trip recommendation requests. Figure 7b provides a usage example to offer a tangible 
understanding of the end-user experience. 

Providing real-time fleet availability predictions encourages seamless travel by helping passengers 
confidently plan transfers between public transit and shared micro-mobility services. This integration 
strengthens the complementary role of NSM, offering flexible first- and last-mile options that extend the reach, 
convenience and resilience of urban public transit network. 

 

Figure 7.a Integration of Fleet Availability Forecasts into a MaaS Platform for Real-Time User Information. This figure 
presents how short-term fleet availability predictions are integrated into a MaaS system to inform users about the 
likelihood of finding at least one available CHECK e-scooter upon arrival at the Beurs mobility hub. The prediction pipeline 
combines real-time fleet and weather data to forecast availability for the next 90 minutes. These forecasts are generated 
by a short-term availability prediction API, updated every 15 minutes, and translated fleet availability likelihood predictions 
into user-friendly labels: Very likely, Likely, Less likely, or Unlikely. This information is incorporated into RET’s MaaS 
platform to enhance travel planning with real-time micro-mobility insights. 
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Figure 7.b Example of Fleet Availability Prediction Linked to a MaaS Trip Plan. This figure illustrates how 
short-term fleet availability predictions are integrated into the RET MaaS platform. The predicted availability 
likelihood icon is displayed to the passenger within the recommended trip in the app (top row), utilizing the 
real-time forecasting generated through the backend prediction process (bottom row). 

3.5 Next Steps 

The model and API will be calibrated for Munich as a preparation for the future implementation. The API is 
easily adaptable to be implemented in further cities, as long as data is available. The integration in MaaS 
apps of course differs depending on the current solution in each city. 

4 Conclusions 

The work carried out in Task 2.1 demonstrates the steps towards a successful integration of short-term fleet 
availability predictions into a MaaS travel planner, bridging advanced data-driven forecasting with real-world 
user applications. Through the collaboration between TUD, Siemens, and RET, the predictive models have 
been embedded into an API infrastructure that will enable timely, location-specific availability data to be 
presented directly to travellers at the moment of decision-making. 

While the initial implementation is focused on the Beurs mobility hub in Rotterdam, the architecture and 
methodology have been designed with transferability in mind. The modular API structure, combined with the 
flexible grid-based prediction models, allows for adaptation to different cities, mobility hubs, and shared 
service providers. In the long term, the ambition is to make the API available to other living lab cities and 
observer cities within the SUM project. This will support a broader shift toward integrated, data-informed 
mobility ecosystems across Europe. 

By improving the predictability and visibility of shared mobility options within multimodal journey planning, 
the tools developed in Task 2.1 contribute directly to increasing the attractiveness and usage of both shared 
modes and public transport. Ultimately, this supports the overarching project goal of building more 
sustainable, efficient, and user-friendly urban mobility systems. 
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