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Project Executive Summary 

The objective of the SUM project is to transform current mobility networks towards innovative and novel 

shared mobility systems (NSM) integrated with public transport (PT) in more than 15 European Cities by 

2026, reaching 30 by 2030. Intermodality, interconnectivity, sustainability, safety, and resilience are at the 

core of this innovation. The outcomes of the project offer affordable and reliable solutions considering the 

needs of all stakeholders such as end users, private companies, public urban authorities. 

 

Social Media links: 

@SUMProjectHoEU 

 @SUM Project 

For further information please visit WWW.SUM-PROJECT.EU

https://twitter.com/SUMProjectHoEU
https://www.linkedin.com/company/sum-project-horizon-europe/?viewAsMember=true
http://www.sum-project.eu/


 

 

    

Deliverable executive summary 

Keywords 

shared mobility, on-demand transportation, mode-choice, simulation, optimization 

Summary 

Shared mobility services offer innovative transportation solutions that, when effectively integrated with public 

transportation, bridge service gaps and enhance overall mobility. This deliverable focuses on ride-pooling 

services, a form of ridesharing where either a city or a private enterprise manages a fleet of vehicles (often 

shuttles) to provide on-demand transit. A ride-pooling service matches requests with similar routes that start 

and end within a defined service area. Operators must decide which requests to accept and which vehicles 

to assign. A sustainable service pools a substantial portion of rides without significantly extending journey 

times due to detours and intermediate stops. 

This deliverable presents two holistic frameworks developed as part of the SUM project for managing ride-

pooling services. These complementary frameworks facilitate the design and evaluation of ride-pooling 

services that enhance urban mobility and integrate effectively with existing public transportation networks. 

The first framework is centred on three core components: mode choice, service simulation, and design 

optimization. At its core is a feedback loop where a mode choice model predicts user demand, a high-

resolution simulator (FleetPy) models service performance, and updated service quality metrics refine the 

demand estimates. Once this inner loop stabilizes, an outer optimization process explores service design 

parameters – such as fleet size and operational area – using simulation-based search heuristics. This 

iterative framework is demonstrated through a case study in the Yuvalim-Ganim neighbourhood in 

Jerusalem. Initial results demonstrate inner loop convergence, revealing consistent patterns in model 

parameters that capture passenger preferences and system dynamics. Notably, an increasing returns 

phenomenon is observed, where expanding the fleet size leads to higher mode share and a greater number 

of served requests, emphasizing the importance of maintaining sufficiently large fleets to support effective 

pooling. 

The second framework enables evaluating the potential implementation of a demand-responsive ride-pooling 

service. The framework consists of two stages, beginning with an area-level feasibility assessment using the 

ExMAS tool to simulate pooling opportunities and identify optimal hub connections across various demand 

scenarios. The second stage integrates new shared mobility with the city’s public transport system using the 

SimFLEX framework, which incorporates iterative mode choice modelling to evaluate the combined service's 

attractiveness over standard transit. Key performance indicators such as mileage reduction, waiting time, 

occupancy, and user satisfaction guide the comparative analysis. This framework is utilized to evaluate and 

compare 12 selected areas in Krakow for the potential implementation of a new demand-responsive transport 

service. The service is envisioned as a small-capacity bus system that picks up travellers from designated 

shared collection points and transports them to major transfer hubs, such as tram or railway stations, where 

they can continue their trip via regular public transport. 

Together, these frameworks offer robust tools for designing ride-pooling services – from evaluating spatial 

feasibility to optimizing user adoption – serving as practical resources for urban planners aiming to improve 

multimodal connectivity and the overall efficiency of urban transport systems. 

This document provides a detailed description of the proposed framework and offers step-by-step guidelines 

for implementing them in new locations, covering introduction to the code repository, software installation, 



 

 

    

data preparation, execution, and output interpretation. To illustrate the framework's components, we use 

examples from the two Living Labs.  

Purpose of the deliverable  

The purpose of this deliverable is to present comprehensive frameworks for designing, implementing, and 

evaluating dynamic ride-pooling services in urban environments. It outlines the theoretical foundations, key 

components, and practical considerations necessary for applying the framework across different locations. 

By providing a clear structure, the document aims to guide practitioners and researchers through each stage 

of the process, from initial setup to the interpretation of system performance outcomes. 

Beyond describing the methodology, the document serves as a practical manual for deployment. It details 

the technical steps required to implement the framework, including software installation, data preparation, 

scenario execution, and result analysis. By offering concrete guidelines and best practices, it seeks to ensure 

that users can effectively replicate and adapt the framework to the unique conditions and needs of different 

cities or neighbourhoods. 

Any change to a transportation service places a burden on users, whether it involves road construction, 

adjustments to public transport timetables, or the introduction of new route plans. While new shared mobility 

(NSM) services are inherently flexible and lend themselves to periodic adjustments, changes to pricing 

structures, service areas, or operating modes can be challenging to communicate to users and often require 

considerable time for the system to stabilize. The primary goal of this document and its accompanying code 

repository is to equip cities participating in the SUM project – as well as other cities considering the 

implementation or redesign of ride-pooling services – with tools to systematically evaluate different service 

configurations. These tools aim to support realistic assessments of service performance, operational costs, 

and expected mode share, ultimately enabling better advance planning and more informed decision-making 

regarding the design of ride-pooling services. 

Attainment of the objectives and explanation of deviations 

The following excerpts are representative statements from the Task 2.2 description in the SUM agreement: 

1) “we will apply a holistic framework for the management of shared on-demand fleets consisting of the 

following elements: mode choice, simulation, and optimization” and 2) “Our approach consists of the following 

steps: (i) creating digital twin models of real-world ride-hailing and ride-pooling operations, including user-

interaction, routing, and vehicle charging strategy; (ii) calibrating the operational strategies and the user 

model with data available from several of our Living Labs; (iii) analysing traffic-flow and safety indicators 

related to boarding processes; (iv) analysing the impacts of user cancellations and developing control 

strategies for specific cancellation rates; (v) specifying utility-based service design models and online control 

strategies; and (vi) testing different scenarios to support the design of field implementations.” 

We have built the frameworks as initially envisioned; both are already implementable and consist of the three 

main elements described above. Steps (i)–(ii) and (v)–(vi) were carried out as planned. While a more detailed 

representation of the boarding process and a direct modelling of user cancellations are still pending, these 

were not required for the initial analysis. The initial development focused on the Krakow and Jerusalem living 

labs. The frameworks were developed in a modular manner, enabling the addition of these components later, 

based on the needs of the following cities. 



 

 

    

Intended audience 

The intended audience includes SUM Living Labs, other cities, and relevant policymakers involved in 

planning the implementation or redesign of ride-pooling services. The dissemination level of this deliverable 

is “Public”.  

Structure of the deliverable and links with other work 

packages/deliverables  

This deliverable consists of both this document and an accompanying code repository. As a by-product, it 

enables high-resolution static demand predictions for ride-pooling services and supports the representation 

of existing public transportation (PT) services, allowing their interactions with ride-pooling systems to be 

modelled effectively. In this sense, the deliverable is closely linked to other two tasks – – task 2.1 and 2.3 – 

– within Work Package 2. 

  



 

 

    

1. Introduction 

As urban populations grow and the demand for sustainable transportation increases, cities are actively 

exploring innovative mobility solutions. Ride-pooling, a form of shared mobility that allows multiple 

passengers to share a vehicle for trips with overlapping origins or destinations, has emerged as a promising 

option (Shaheen & Cohen, 2019). It occupies an important space in the Mobility-as-a-Service (MaaS) 

paradigm, which aims to integrate various forms of transport services into a single accessible platform 

(Hensher et al., 2020). 

Understanding how individuals choose between ride-pooling and other transportation modes is essential for 

designing effective services and policies. Mode choice modelling offers a structured framework for capturing 

user preferences and decision-making behaviour (Ben-Akiva & Lerman, 1985). When combined with 

simulation frameworks, these models enable researchers and planners to analyse and forecast the 

performance of ride-pooling systems under various scenarios (Friedrich, 2016). To effectively leverage these 

approaches for evaluating and identifying promising system designs, they must be integrated with 

appropriate optimization algorithms – while accounting for the significant computational cost associated with 

evaluating each design. 

This introduction provides an overview of the current state of the art in the three core components essential 

for evaluating ride-pooling services: mode choice, simulation, and optimization. In this Deliverable, we 

present two frameworks developed as part of the SUM project, each designed to support the planning and 

design of different types of ride-pooling services. These frameworks integrate the three components in 

distinct, modular ways. An overview of the two frameworks is provided at the end of this section. The 

subsequent sections offer a detailed description of each framework, present numerical results, and highlight 

key insights derived from the analyses. 

1.1. Literature review 

Ride-pooling services, also known as dynamic carpooling or shared rides, differ from traditional ride-hailing 

by allowing multiple passengers to share a trip, thereby reducing costs, vehicle miles travelled (VMT), and 

environmental impact (Fagnant & Kockelman, 2014). Unlike fixed-route transit, ride-pooling offers flexible 

routing and scheduling, responding dynamically to real-time demand. 

Operational models for ride-pooling vary widely. Some services operate on a fully dynamic, on-demand basis 

(e.g. Uber Pool, Lyft Shared), while others use hybrid models combining scheduled and flexible components 

(e.g. Via, MOIA). The effectiveness of these services depends on algorithms for matching riders, routing 

vehicles, and minimizing detours (Alonso-Mora et al., 2017). Challenges include ensuring acceptable levels 

of service (e.g., waiting time, travel time), achieving high vehicle occupancy, and managing user expectations 

(Ma et al., 2013).  

Mode choice modelling is grounded in discrete choice theory, which assumes that individuals choose the 

option that maximizes their utility among a set of alternatives. Commonly used models include: Multinomial 

Logit, Nested Logit, Mixed Logit and Probit Models. These models differ in their assumptions regarding the 

correlation between alternatives, the number of alternatives that can be considered, representation of 

variation and the use of theoretical distributions (Train, 2009). These models are estimated using revealed 

preference data from actual travel behaviour, stated preference surveys, or a combination of both (Walker & 

Li, 2007).  

In the context of ride-pooling, mode choice models must incorporate attributes unique to shared mobility, 

such as waiting time, detour length, price sensitivity, and social factors (Lavieri & Bhat, 2019, de Ruijter et 

al., 2023). For instance, Krueger et al. (2016) explicitly includes ride-pooling as a distinct alternative in mode 



 

 

    

choice models, alongside public transit, walking, biking, and ride-hailing. Empirical studies highlight several 

key factors influencing ride-pooling adoption: time-related attributes such as travel and waiting times play a 

critical role in mode choice decisions (Abouelela et al., 2022); cost savings relative to private or single-

passenger options enhance the appeal of ride-pooling (Alemi et al., 2018); and user preferences are shaped 

by demographic characteristics, trip purposes, and familiarity with shared mobility services (Dias et al., 2017).  

A major challenge in modelling new shared mobility services – particularly ride-pooling – is the lack of 

representation in existing travel behaviour data and stated preference surveys. This is primarily because the 

analysis is often done prior to the implementation of these services. As a result, additional methods are 

needed to integrate them into models. These include approximating their attributes using comparable existing 

modes (Krueger et al., 2016) and incorporating performance metrics derived from simulation models (Liu et 

al., 2019; Alonso-González et al., 2021). 

Simulation frameworks are essential tools for evaluating the performance of ride-pooling systems under 

varying demand, supply, and policy scenarios. Two predominant modelling approaches are commonly 

employed: Agent-Based Modelling (ABM) and Event-Based Simulation. 

Agent-based models represent travellers, vehicles, and operators as individual agents with distinct 

behaviours and decision rules. This approach offers the flexibility to capture interactions, heterogeneity, and 

emergent system-level dynamics (Nahmias-Biran et al., 2019, Zwick et al., 2021; Engelhardt et al., 2022, 

Akhtar et al., 2024) For example, Bischoff et al. (2017) integrates ride-pooling services into the MATSim 

platform to assess their impact on Berlin’s urban transport system. The findings suggest that replacing private 

car use with pooled rides can significantly reduce total vehicle kilometres travelled, although effects on 

congestion depend on adoption levels. Alonso-Mora et al. (2017) develop a real-time, high-capacity ride-

pooling algorithm and simulate it using a large-scale dataset from New York City. The dynamic simulation 

showed that over 95% of taxi demand could be met using only 20% of the fleet, through efficient pooling. 

Omidvar et al. (2022) employ agent-based simulation to analyse electric, autonomous ride-pooling services 

under different charging strategies, emphasizing trade-offs between battery capacity, charging infrastructure, 

and service quality. 

Event-based simulation, in contrast, models system dynamics by sequencing discrete events – such as ride 

request arrivals, vehicle assignments, and passenger boardings – in chronological order. This approach is 

particularly well-suited for evaluating dispatching algorithms and operational strategies. For instance, 

Bongiovanni et al. (2022) simulate the operations of autonomous ride-sharing services using an event-based 

framework, which is embedded in a data-driven optimization model designed to dynamically assign requests 

and determine vehicle routing. 

Optimization approaches in ride-pooling research can be broadly categorized into two groups: operational 

decision-making and strategic service design. The first group focuses on daily operational decisions such as 

vehicle routing, request assignment, and vehicle redistribution. Central to this is the Dial-a-Ride Problem 

(DARP), which models the task of designing cost-minimizing routes and schedules for a fleet of vehicles 

departing from a common depot to serve a set of passengers with specified pickup and drop-off locations 

and associated time constraints. The static version of DARP assumes that all transportation requests are 

known in advance, whereas the dynamic version deals with real-time request arrivals that must be handled 

as the system operates. Operational constraints typically include vehicle capacity, tour duration, time 

windows, and ride-time limitations (Molenbruch et al., 2017; Ho et al., 2018). 

A related stream of research addresses the matching of vehicles to ride requests under dynamic conditions, 

often emphasizing the development of online algorithms. Agatz et al. (2012) provide a foundational review 

of dynamic ride-sharing optimization techniques, distinguishing between heuristic and exact methods and 

highlighting the trade-offs between solution quality and computational speed. Nourinejad and Roorda (2016) 

use agent-based modelling to compare centralized and decentralized matching strategies, capturing both 

individual traveller behaviour and system-level dynamics. Yu and Shen (2019) propose a scalable hybrid 



 

 

    

method that combines problem decomposition with approximate dynamic programming to improve real-time 

assignments by anticipating future demand. Şahin et al. (2022) introduce a data-driven approach that learns 

from historical trip data to balance detours and waiting times in matching decisions. More recently, Tuncel et 

al. (2023) develop an integrated model for real-time ride matching and vehicle rebalancing, using a mixed-

integer programming framework informed by short-term demand forecasts to improve reliability and 

efficiency. 

Another critical operational challenge is vehicle redistribution, especially given the spatial and temporal 

asymmetry of demand, which can result in supply imbalances. Efficient repositioning strategies are essential 

for maintaining service quality. Fagnant and Kockelman (2014) offer early insights using agent-based 

simulation to demonstrate how proactive relocation of shared autonomous vehicles (SAVs) can enhance 

service performance and reduce vehicle miles travelled. Wallar et al. (2018) formalize vehicle rebalancing as 

an optimization problem, proposing a real-time model that incorporates demand forecasts and pooling 

opportunities. Syed et al. (2021) propose a density-based method that redistributes idle vehicles using 

historical demand heatmaps. Engelhardt et al. (2023) apply machine learning to forecast demand and guide 

repositioning, improving both service availability and pooling rates. Valadkhani and Ramezani (2023) present 

a rolling-horizon optimization framework that integrates predictive repositioning into large-scale ride-sourcing 

operations, accounting for both current system conditions and anticipated demand. 

The second group of studies focuses on strategic design decisions, including fleet sizing, pricing, service 

area configuration, and integration with public transit. Balac et al. (2020) use agent-based simulation to 

explore optimal fleet sizes for pooled automated vehicle services, revealing how vehicle supply influences 

service efficiency and user satisfaction under varying demand conditions. Zwick and Axhausen (2020) 

investigate how parameters such as detour thresholds and maximum waiting times affect system 

performance and public acceptance, highlighting important trade-offs between service quality and 

operational efficiency. Bahrami et al. (2022) introduce a mathematical optimization framework to determine 

the ideal mix of solo and pooled services in ride-hailing fleets, demonstrating that offering both options can 

enhance system efficiency and user welfare when priced effectively. Fan et al. (2024) explore the integration 

of ride-pooling as an on-demand feeder for public transit, proposing a bi-level optimization model that jointly 

designs service zones and dispatching strategies to minimize both user and operator costs. Akhtar et al. 

(2024) use a game-theoretic framework to analyse the interactions between dynamic pricing, driver 

incentives, and user mode choices, proposing pricing strategies that maximize revenue while accounting for 

fluctuating demand and traveller behaviour. 

In recent years, several Integrated Frameworks have applied bi-level optimization integrating mode choice 

models within simulation environments to optimize the design and operation of mobility on demand (MoD) 

systems. These frameworks follow a common structure: an inner loop consisting of mode choice modelling 

and service simulation, and an outer loop responsible for optimizing system design variables such as fleet 

size, service configuration, and pricing. This coupling ensures that user behaviour and system performance 

inform design decisions iteratively and realistically, accounting for demand–supply interdependencies. 

In Liu et al. (2019), a multinomial logit model is estimated from stated preference data to capture user 

preferences across different travel modes, including mobility on-demand services. The mode choice model 

feeds into a simulation module that evaluates MoD system performance under different demand realizations. 

This inner loop is embedded within an outer-loop optimization routine, where Bayesian optimization, a 

sequential search strategy for the global optimization of an expensive black-box function, determines the 

optimal fleet configuration and pricing strategy. Bansal et al. (2019) extends this framework by incorporating 

reliability into the choice model, showing that conveying wait-time reliability can significantly influence user 

preferences. Both studies use simulated service performance to inform travel time and wait time inputs in the 

utility function, creating a feedback loop between user choice and service quality. 



 

 

    

Pinto et al. (2019) and Hu et al. (2024) adopt similar agent-based simulation frameworks, embedding mode 

choice models within iterative simulations of multimodal systems that include shared autonomous vehicle 

fleets and fixed-route transit. Pinto et al. (2019) solve a bi-level optimization problem in which the upper level 

selects fleet sizes and transit line frequencies, while the lower level simulates mode choices and vehicle 

operations using a detailed agent-based model. Hu et al. (2024) further enrich the inner loop by modelling 

supernetwork structures and service coverage through binary logit models, capturing nuanced spatial and 

service-level decisions. Guo and Zhao (2024) generalize this approach by optimizing pricing, fleet sizing, 

and transit routing while modelling individual-level mode and route choices with discrete choice models. They 

use scalable approximation methods to solve the large-scale problem efficiently. Collectively, these works 

illustrate a shift toward tightly coupled behaviour-system co-design paradigms in transportation, where mode 

choice models and simulation models are central elements in system optimization. 

1.2. Overview of the proposed frameworks 

The two frameworks presented here are both designed to support the assessment of NSM solutions in 

conjunction with public transport. They share a modular architecture, allowing for the flexible substitution or 

modification of key components such as mode choice models and simulation engines. Both frameworks rely 

on open-source tools, generate comparable performance indicators, and enable comparative evaluation 

across different deployment strategies. 

Despite these commonalities, they differ in purpose and approach. The simulation-optimization framework is 

intended to optimize the configuration and operation of on-demand fleets. Leveraging FleetPy and embedded 

optimization loops, it offers mobility operators significant flexibility to fine-tune service parameters such as 

dispatching policies, pricing mechanisms, and fleet composition. While public transport integration is not built-

in, it can be incorporated through external modules as needed. 

In contrast, the ExMAS–SimFLEX framework focuses on identifying optimal locations and conditions for 

introducing pooled feeder services. It is specifically designed to integrate with existing public transport 

systems and to evaluate user adoption over time through iterative behavioural modelling. This framework is 

particularly well-suited for urban planners seeking data-driven, context-sensitive recommendations for the 

spatial deployment of ride-pooling services. 

Simulation-Optimization Framework  

This framework comprises three key elements: mode choice, simulation, and optimization. While many 

studies in mode choice rely on external data, such as mobility preference surveys, our framework adopts a 

novel approach. It integrates data from simulated ride-pooling operations into the mode choice model, 

leveraging a high-resolution simulator called FleetPy. These two components form a feedback loop: the mode 

choice model predicts how many travellers will select the ride-pooling service, FleetPy simulates the service 

and generates service quality metrics, and these metrics feed back into the mode choice model, adjusting 

the modal split for the next iteration. When this feedback loop converges, it provides an evaluation of a given 

service design. The outer layer of the framework focuses on the optimization of service design. Using a 

simulation-based optimization approach, this layer generates each service design, initiates the inner loop, 

and evaluates the results. The goal is to explore the vast parameter space intelligently to identify promising 

configurations. The challenge lies in balancing the computational cost of each evaluation with the desire to 

find reliable solutions. We address these computational challenges through parallel processing and adaptive 

modelling. Even with these approaches, only a limited number of possible designs can be evaluated, 

necessitating the development of efficient search heuristics. Figure 1 displays an overview of the framework. 

 

 



 

 

    

 

Figure 1: Overview of the Simulation-Optimization Framework 

 

ExMAS-SimFLEX Framework 

This framework follows a two-stage approach designed to comprehensively assess the feasibility and 

potential impact of NSM services integrated with public transport. In the first stage, we apply a parameter-

free methodology to evaluate the suitability of NSM deployment in pre-selected areas based on spatial 

demand distribution and ride-pooling potential. Using ExMAS, we simulate multiple demand scenarios across 

24 area-hub combinations and assess service performance using key performance indicators (KPIs) such 

as mileage reduction, passenger satisfaction, and occupancy rates. This stage identifies the most promising 

hub for each area and pinpoints which areas meet the minimum demand thresholds for initial implementation. 

In the second stage, we analyse complete door-to-door trips by integrating NSM with existing public transport 

through the SimFLEX framework. This involves simulating travel demand and traveller behaviour using 

iterative mode choice modelling and evaluating the attractiveness of the combined NSM+PT service relative 

to traditional PT-only alternatives. KPIs such as service attractiveness, waiting time reduction, and added 

value inform our evaluation of the areas with the highest adoption potential. Together, these stages provide 

a robust, passenger-centred methodology that supports evidence-based decision-making for urban planners 

and policymakers aiming to strengthen first- and last-mile connectivity in public transit networks. 

  



 

 

    

2. Simulation-Optimization Framework 

 

2.1. Input 

The framework requires several key inputs to operate effectively. These include an origin-destination (OD) 

matrix specifying the trip volumes between all pairs of Traffic Analysis Zones (TAZs) for a given time period, 

and a street network, which can be obtained in a compatible format as described in the "How-To" section. 

Additionally, a table is needed that maps each node ID in the street network to its corresponding TAZ ID. 

The simulation requires extensive configuration such as information about the fleet (e.g. vehicle maximum 

occupancy, fuel consumption, number of vehicles) and operator policies that affect the potential for pooling 

requests. These are aspects of an NSM design and addressed in detail in Section 2.3.1. The simulation also 

requires low-level settings such as the simulation time step, which the framework sets in its configuration 

files and does not vary. 

 

For the mode choice component, utility formulas must be provided for each available mode, with basic 

examples offered in the "How-To" section. Initial model parameters must also be supplied for all modes, 

including both alternative-specific constants (ASCs) and beta coefficients. Finally, initial estimates for the 

NSM's key performance metrics – such as expected wait time and trip delay relative to private car travel – 

are needed.  

 

While not strictly required, GIS layers of the units of analysis for demand (e.g., TAZ) and for the focus 

neighbourhood or area would likely prove helpful. Furthermore, since calculating utility for each mode and 

trip requires estimating the trip time and distance, access to a routing service will be required. This is 

discussed further in the section dedicated to creating the sample frame.  

2.2. Inner-loop 

The inner loop receives a parameterized NSM design and loop control settings from the outer loop. It iterates 

over the design, running the NSM simulation, and updating its estimates until reaching a threshold of 

consistency called convergence. It then returns an evaluation of the NSM design. The following sections 

discuss every aspect of the inner loop as presented in Figure 2 below. 



 

 

    

 

Figure 2: Overview of the inner-loop 

Repetitions 

An iteration does not usually involve just a single sample of demand, mode choice, and simulation. To reduce 

the impact of outliers, the framework permits users to specify that each iteration will include multiple 

repetitions with different demand samples but the same NSM design, NSM metrics, and mode choice model. 

After every iteration, the framework calculates the mean value of NSM performance metrics and mode choice 

model parameters for the next iteration. This process is made more efficient by FleetPy’s excellent parallelism 

for disparate jobs. 

Initial Values 

Every time the inner loop receives a new NSM design, it resets to the same user-defined initial values for 

mode choice model and NSM performance metrics. These initial values affect the efficiency of the inner loop. 



 

 

    

The mode choice model includes alternatives specific constants (ASCs) for every mode and beta coefficients 

for every utility parameter. The framework expects users to have initial values for these based on a recent 

mode choice survey, but without the hypothetical NSM under investigation. The framework is designed to 

estimate a new model that includes this NSM as a mode option. However, the framework requires starting 

estimates for the missing NSM ASC and any new betas, such as B_RISK, which adjusts the impact of low 

service rates (high risk) for on-demand, ride pooling services. The case study describes one way of 

calculating these. 

Similarly, the framework requires initial values for NSM metrics that become or are used to calculate utility 

parameters. The framework tracks the NSM wait time, NSM delay ratio, and NSM request acceptance ratio. 

The NSM wait time is the time between when a traveller makes a request and when that traveller receives 

service. The NSM delay ratio is the NSM travel time divided by car travel time. This value is equal to 1.0 

when ride pooling is not possible and over 1.0 when ride pooling occurs, causing delay. The framework 

requires values for these metrics to determine mode choice in the first iteration. Mode choice determines 

which and how many travellers select the NSM, enter the simulation, and affect the performance metrics 

used in the next iteration. The initial values for the NSM metrics therefore might be interpreted as 

representing what travellers believe about the NSM on its first day of service. If their beliefs are overly 

optimistic, the NSM will be overwhelmed with requests for service, leading to time consuming ridesharing 

delays, and many unserved users. Additionally, from a framework performance point of view, an overload of 

requests for NSM service results in longer simulation times. The metrics will be corrected downward over 

subsequent iterations. If the metrics are pessimistic, the NSM will provide a high level of service to nearly all 

customers. The performance metrics will be corrected upward over subsequent iterations. However, if the 

metrics are so pessimistic that no users select the NSM, the entire optimization process will stop prematurely. 

For this reason, it is better for initial NSM metrics to err on the side of optimism. 

Alpha Weight 

The mode choice model parameters and NSM metrics do not remain at their initial values. Each iteration 

produces new estimates of their true value. A user-defined alpha weight balances prior estimates against 

new estimates. Technically, this alpha is a float between zero and one with values less than 0.5 favouring 

the prior estimate and values greater than 0.5 favouring the new estimate. Practically, the weight controls 

how quickly travellers act upon new information regarding NSM performance. Conceptually, this might be 

interpreted variously as learning, information diffusion, or technology adoption. There is a single alpha weight 

for all trips and metrics. When the weight is low, travellers act slowly upon new information. Here is the 

formula used to update all metrics: 

next value = previous value * (1.0 - alpha) + current value * alpha 

If NSM performance metrics start far from their true values, many iterations will be required to reach 

convergence, costing CPU time and resulting in evaluating fewer NSM designs. Furthermore, the high 

number of iterations required may reach the max iteration set by the user via the outer loop, causing the 

inner loop to exit before reaching a stable estimate of NSM performance and raising doubts about 

optimization results. Conversely, when the weight is high, travellers act quickly upon new information. Even 

if NSM performance metrics start far from their true values, few iterations may be required to reach 

convergence. However, weights that are too high can cause metrics to cycle around their true values as 

travellers overreact. For this reason, it is better to begin experimenting with the framework using an alpha 

weight between 0.1 and 0.5.  

Mode Choice 



 

 

    

At the start of each iteration, the inner loop draws a sample from a large pool of potential trips. This pool is 

called the demand sample frame. The case study explains one way of creating a suitable sample frame from 

an OD matrix. Generating it takes time, but is only performed once, offline. Sampling from the frame every 

iteration and repetition is not instantaneous, but still much faster than generating new data. Larger sample 

frames produce more varied demand and robust results. Every part of the framework runs slower when there 

are many travellers, especially many NSM users. For this reason, even when the sample frame is very large, 

it is recommended to begin experimenting with the framework using small demand samples.  

The framework chooses a mode for every traveller in the sample following random utility theory. It calculates 

the utility of every mode based on user-defined formulas and the current mode choice model and mode 

metrics. Only the NSM’s metrics change between iterations. The framework uses utility to calculate the 

probability of selection for each mode and then selects one at random in accordance with those probabilities.  

Simulation 

The framework uses a specialized NSM simulator to evaluate the performance of a given NSM design. For 

on-demand ride pooling services, the framework relies on FleetPy. For every iteration and repetition, the 

framework turns travellers who chose the NSM into requests for NSM service and calls the simulator to 

determine if those requests receive service and – if yes – at what level (wait time and travel time).  

FleetPy runs simulations for every repetition in an iteration, executing many jobs in parallel if configured to 

do so and if hardware permits. The framework then reads FleetPy’s output files. To simulate the need for 

travellers to reach their intended destinations, the framework forces unserved NSM requests onto other 

modes according to the original probabilities.  

Updating NSM metrics 

Served NSM requests are used to compute mean performance metrics across all repetitions. One key metric 

is the NSM delay ratio, which is usually greater than one and represents how much longer a trip takes by 

NSM compared to a private vehicle due to ride pooling. Other key metrics include the wait time and the 

service rate. The framework computes a mean value for each metric across all repetitions and updates the 

inner loop’s ongoing estimate of these values using the user-defined alpha weight. 

Updating the Mode Choice Model 

The framework applies the updated NSM metrics to the original demand sample, recalculating utilities with 

the original mode choice model but with a better estimate of NSM performance. It then permits travellers who 

received service from the NSM and travellers who never requested service to choose their travel mode again 

based on the new probabilities. These decisions are used only to update the model at the end of an iteration 

– the simulator is not run again. For each repetition, the framework runs the discrete choice package, 

Biogeme, on the new set of utilities and mode choices and receives new model parameters. It then calculates 

the mean of these and updates the mode choice model according to the user-define alpha weight. 

Stop Condition 

The inner loop has two stop conditions, either of which causes the loop to return the most recent NSM 

evaluation to the outer loop and exit. The outer loop establishes both conditions when calling the inner loop. 

The first condition is if the difference in the NSM mode split between the current iteration and previous 

iteration is lower than the specified threshold. This condition is interpreted as meaning that the inner loop 

has converged at a stable (enough) solution and further iterations are no longer necessary. The second 

condition is if the current iteration is equal to the maximum number of iterations permitted. This condition is 

interpreted as meaning that the inner loop has timed out. 



 

 

    

If no stop condition fires, then the inner loop repeats from the beginning using the most recent mode choice 

model and NSM metrics. It draws a new random sample for each repetition, chooses travel modes for 

traveller, etc. 

The next sections describe the two major components of the inner loop (mode choice and simulation) in more 

detail. 

 

2.2.1. Mode choice 

This section reviews the role of mode choice modelling in the framework, introduces random utility theory, 

provides examples of utility formulas, describes how the framework updates the mode choice model, and 

introduces the discrete choice modelling package, Biogeme, which the framework calls to generate new 

estimates of model parameters.  

The Role of Mode Choice Modelling 

Unlike a bus or train operator who could hypothetically test aspects of the service by assigning vehicles to 

move along the intended path without passengers, on-demand mobility operators have no default path for 

vehicles to follow. The framework must generate NSM service requests before it can evaluate that service.  

The performance of an on-demand service depends directly on the time, origin, and destination attached to 

requests and the current MoD fleet state. The NSM simulator provides this dynamism on the supply-side by 

simulating a fleet of vehicles moving through a network to pickup and drop-off travellers. The mode choice 

model provides this dynamism on the demand-side by simulating individuals deciding which mode to use 

given details about their trips and the various modes available.  

The framework draws from a sample frame based on an empirically derived OD matrix. The sample does 

not specify each traveller’s intended mode, just the parameters necessary to compute the probability each 

mode has of being selected. Using a mode choice model permits the framework to change these probabilities 

as each traveller learns more about how the NSM is expected to perform. Mode choice modelling permits 

good systems to attract more users and poor systems to attract fewer users. The simulator responds, 

permitting systems with few requests to serve nearly all of them in a timely manner and overburdened 

systems to struggle with low service rates and significant delays due to ride-pooling. 

Random Utility Theory 

The framework follows the tenants of random utility theory, which holds that decision makers (people) are 

utility maximisers and choose the alternative with the highest utility. The total utility (U) of an alternative (e.g., 

a product or service) has both an observable, deterministic part (V) and an unobservable, stochastic part (ε).  

U = V + ε 

Since ε is stochastic (a random variable), researchers assume it follows a known distribution (e.g. normal) 

and then model choice probabilistically based on the relative sizes of the deterministic part of the equation. 

The alternative with the highest V would therefore have the highest likelihood of selection and be selected 

the most often, but its selection could not be guaranteed every time if alternatives exist with non-zero V. In 

this document, the term “utility” refers to this deterministic part (V) and the term “total utility” refers to both 

parts together.  

Utility for a given alternative is composed of several parameters. Many travel-related utility formulas depend 

upon time and cost. Each of these variables requires a coefficient called a beta, which scales its value based 

on its impact on choice (amount and direction). Since travelers don’t like spending money and time on travel, 



 

 

    

both these betas are usually negative. Each mode also has an alternative ASC capturing the relative 

attractiveness of each mode that cannot be explained by the other parameters. Therefore, using parentheses 

to emphasize grouping and the prefix “B” to connote “beta”, each mode’s utility follows the pattern: 

V = ASC + (B_VAR1 * VAR1) + (B_VAR2 * VAR2) 

Example Utility Formulas 

The following utility formulas employed during the framework’s development can serve as a starting point for 

more location specific and advanced ones. They assume: 

Walking and biking are free save for the time spent. 

A unit of time or money spent for one mode is equal to the same unit spent for another mode. This means 

time spent riding a bike (in a park) is the same as time spent driving a car (in traffic). 

Only the NSM comes with a risk of not receiving service. 

Calculating and comparing utility requires formulas for each mode that will include the alternative specific 

constant (ASC) for each mode, one or more variables and the beta (coefficient) for each variable. The ASC 

captures the relative attractiveness of each mode that the variables do not account for.  

Walking  

V0 = ASC_WALK + B_TIME * WALK_TIME  

Biking 

Traditional and electric bikes have different travel times and may require modelling as different modes. 

V1 = ASC_BIKE + B_TIME * BIKE_TIME      

Private car 

The formula below calculates the utility of car usage as fuel consumption, which requires setting the cost of 

fuel per litre and fuel economy (km per litre) to a local average and adding a column to the sample frame 

measuring trip distance by car. More sophisticated utility formulas might include parking or even per trip fuel 

economy based on car ownership if such data exists. 

V2 = ASC_CAR + B_TIME * CAR_TIME + B_COST * CAR_COST   

Public transit 

More advanced PT utility formulas might consider the availability of service near the origin and destination.  

 

V3 = ASC_PT + B_TIME * PT_TIME + B_COST * PT_COST     

New Shared Mobility (NSM) 

The framework introduces risk into the NSM utility formulas measured as one minus the service rate. So, if 

a given ride pooling service pickup up seventy-five percent of requests, the risk is 0.25. Since risk is 

unpleasant when one wants travel, the beta for risk is negative. 



 

 

    

V4 = ASC_NSM + B_TIME * NSM_TOTAL_TIME + B_COST * NSM_COST + B_RISK * NSM_RISK 

 

Mode Choice Model Updates 

The development team faced several big questions regarding mode choice modelling. First, should the prior 

ASCs and betas remain constant when a new mode is introduced into the transportation system? These 

values are often derived from surveys of travellers who did not have the opportunity to choose the NSM 

under investigation. Since the framework holds the entire transportation system constant and varies just the 

design of the NSM, it could precompute the utility of each mode for each trip using the prior ASCs and beta 

values. Then the framework would only need to compute the ASC and any betas associated with the NSM 

(and only with the NSM) like B_RISK. However, the developers assert that preferences for travel time, cost, 

and reliability are all deeply interconnected and change depending on the travel modes available. For this 

reason, the framework currently recalculates all model parameters at the end of every iteration. This 

approach is computationally expensive. Further analysis of how the mode choice model parameters change 

from iteration to iteration may reinforce this decision or lead to a better, more efficient solution. 

Additionally, our approach may initially put excessive downward pressure on B_RISK. The framework does 

not permit travellers who were denied service and forced to use a different travel mode the chance to choose 

again in the “reconsider” step in Figure 2. This constraint punishes the NSM design for providing poor service. 

During framework development, permitting this population to also choose travel mode again resulted in 

convergence at service rates around 80% while denying them resulted in convergence at service rates above 

90%. 

The second big question was, how can demand be generated when the inner loop first starts? It needs RISK 

and B_RISK to calculate NSM utility. However, RISK is calculated from the NSM service rate received after 

simulation and B_RISK is calculated by discrete choice analysis at the end of every iteration. The framework 

requires the value of variables it is designed to find! In computation, these chicken and egg problems are 

often solved through a process variously referred to as bootstrapping or iterative calculation. The user must 

provide initial values and the framework will improve upon them. 

If the initial values are wildly incorrect, the optimization process will take longer. If RISK (the chance of not 

being served) and B_RISK (its beta, assumed negative) are both too low, travellers will flock to the NSM, it 

will become overburdened, perform poorly, and the framework will iteratively correct the initial values. If RISK 

and B_RISK are too high, travellers will avoid the NSM, resulting in exceptional performance (as long as 

there are some requests) and iteratively more users will choose the service until it begins to struggle. Like 

the NSM metrics, model parameters are updated according to the alpha weight balancing prior and new 

values. 

To estimate the model parameters, we employ the maximum likelihood method using the Biogeme package. 

Biogeme is an open-source tool specifically developed for estimating a broad range of discrete choice models 

using advanced optimization algorithms. It is widely used in transportation research due to its flexibility and 

robustness. Biogeme supports a variety of custom model specifications, with built-in support for several 

commonly used models, including Multinomial Logit (as used in this framework), Nested Logit, Mixed Logit, 

and Probit models. The package is implemented in Python, allowing for seamless integration into our 

analytical framework. See: https://biogeme.epfl.ch/ for installation instructions, getting started instructions 

and some examples. 

2.2.2. NSM Simulation – FleetPy 

FleetPy is an open-source, agent-based simulation framework developed to model NSM services with high 

temporal and spatial resolution. Written in Python, it is designed to simulate both user and operator behaviour 

https://biogeme.epfl.ch/


 

 

    

in detail, enabling the study of dynamic interactions in shared mobility systems. FleetPy supports scenarios 

with multiple operators and vehicle types, facilitating research into cooperative and competitive dynamics in 

the on-demand mobility landscape. 

A core strength of FleetPy is its focus on modelling user-operator interactions in a realistic manner. For 

instance, users receive real-time trip offers through mobile apps and make decisions such as accepting, 

rejecting, or waiting, while operators control pricing, routing, and matching decisions. This dynamic, 

bidirectional communication structure allows for the simulation of complex system designs, including 

integrated public-private mobility services, or joint passenger-freight operations. 

FleetPy is built with a modular and extensible architecture that supports the reuse of components across 

scenarios. Its key components include: a simulation core that governs event handling and temporal 

progression; a fleet control module for optimization strategies (e.g., dispatching, repositioning); a user 

demand model to represent traveller requests and decisions; a network module for spatial representation 

and routing; and a vehicle module to simulate state transitions and operations. This structure enables 

researchers to plug in custom algorithms or modify specific behaviours without overhauling the entire 

framework. 

Because of its modularity and layered architecture, FleetPy supports flexible experimentation at different 

levels of abstraction. For example, developers can compare different assignment algorithms or operational 

policies using a shared simulation base, or test the sensitivity of system performance to variations in traveller 

behaviour or network design. The framework balances computational efficiency with detailed representation, 

making it suitable for both large-scale simulations and fine-grained analysis of NSM systems. 

See: https://github.com/TUM-VT/FleetPy and Engelhardt et al. (2022) for further information on FleetPy.  

 

2.3. Outer-loop 

As outlined in previous sections, the evaluation of the inner loop is computationally intensive due to the 

multiple iterations required between the mode choice model and FleetPy until convergence is achieved – 

particularly in terms of KPIs. With a clear understanding of the inner loop's structure and the parameters that 

influence its behaviour, we developed a search heuristic that leverages this knowledge to efficiently explore 

promising service designs. 

Specifically, the optimization layer differentiates between two categories of input: service design parameters, 

which correspond to those defined in Section 2.3.1, and evaluation settings, which govern the configuration 

of the inner loop itself. 

It is important to note that a parallel line of research in the scientific literature explores the use of surrogate 

models to approximate computationally expensive simulation-based evaluations. This approach can 

significantly increase the number of configurations that can be assessed during the optimization process. 

While this method is not implemented in the current deliverable, the framework has been designed with a 

modular architecture, allowing for the future integration of such an “intermediate” surrogate modelling layer 

if desired. However, the development and calibration of such a model would likely require tailoring the 

framework to the specific context of the implementing city. 

To maintain clarity and manageability, we implement a metaheuristic search algorithm that interacts directly 

with the inner loop, exploring both service and evaluation settings. As with other components of the 

framework, this outer loop is fully modular and can be readily adapted to incorporate alternative optimization 

strategies as needed. 

https://github.com/TUM-VT/FleetPy


 

 

    

2.3.1. Service design parameters 

The design parameters encompass both strategic and tactical characteristics of the ride-pooling service. 

These include the network structure, service area, operational mode, fleet configuration, and operational 

constraints such as request response time and maximum allowable detour delay. Table 1 summarizes these 

parameters, including their types and defined ranges. 

The network structure specifies the set of transportation links on which ride-pooling vehicles are permitted to 

operate, while the service area is defined as a polygon within which trip requests can be made. Both features 

are treated as categorical variables, meaning the search is limited to a predefined set of candidate networks 

and areas specified as part of the framework's input. 

We consider two primary operational modes: Many-to-Many – where users can request trips between any 

two stops within the defined area, and Few-to-Many – where trip requests must involve at least one location 

from a predefined subset of hub nodes (either as the origin or the destination). In the latter mode, the input 

includes a list of potential hub nodes, from which a subset is selected during the optimization process. 

The fleet configuration is characterized by the number and capacity of vehicles, with the current 

implementation assuming homogeneous fleets. From an operational perspective, when a user submits a 

request, the system must respond within a predefined number of seconds, indicating whether the request is 

accepted and, if so, which vehicle will serve it. Longer response windows generally increase the potential for 

pooling by enabling more flexible assignment options; however, they also significantly raise the 

computational load in FleetPy, as the system must evaluate a larger solution space in the internal assignment 

module. 

Lastly, service quality and pooling effectiveness are highly sensitive to the maximum detour delay allowed 

for on-board passengers – i.e., the additional travel time incurred due to picking up or dropping off other 

riders. This parameter plays a critical role in balancing user satisfaction with system efficiency. 

Table 1: Service design parameters 

Setting Sub-setting variable 

type 

Dictionary Settings considered in 

the numerical results 

Network/ 

Service 

area 

Demand matrix 

(=Points of 

interest+ Hubs) 

categorial [table A, table B…] Yuvalim-Ganim 

Mode Of 

Operation 

Mode Of 

Operation 

categorial MTM: many--> many (+ POI), 

MTF\FTM: many--> few 

(POI/Hubs) 

MTM without POI 

Fleet Fleet size  integer (# of vehicles) Ranges 2-20 

Vehicle capacity  categorial (# of seats per vehicle) will drive additional 

definition 

Operator 

response 

time 

pooling waiting 

time 

integer 

[sec] 

The maximal time the system 

can wait before providing a 

response to a request 

300 Seconds 

De-tour 

delay 

De-tour delay Percentage  Percentage increase as 

compared to direct travel time 

by car 

100% 

 

2.3.2. Evaluation settings 

The following parameters govern the execution of the inner loop and influence both computational efficiency 

and the statistical robustness of the results. These parameters are especially critical when estimating the 



 

 

    

expected performance of a given system design. Proper tuning ensures a balance between resource usage 

and result reliability. Table 2 summarizes these parameters along with their types and allowable ranges. 

The first parameter defines the number of simulation replications used to evaluate each service design. 

Increasing the number of replications improves the statistical accuracy of the evaluation by reducing the 

variance in the results. This parameter typically takes on discrete values, which may depend on the number 

of available processing cores for parallel execution. For instance, if 30 processor cores are available, the 

parameter might take values such as 30, 60, or 90, corresponding to one, two, or three full sets of parallel 

replications. 

The second parameter specifies the maximum number of inner loop iterations allowed before the simulation 

terminates and returns an evaluation. In the current experiments, this value is fixed; however, it can be 

complemented with convergence criteria to enable adaptive termination, thereby reducing computational 

time when the system reaches stability before the iteration limit is met. 

Table 2: Evaluation parameters 

Settings 
variable 
type Range Note 

# of replication in the inner loop 
 
The number of days (or datasets) with 
different demand realizations given to 
the framework for evaluating a single 
NSM design  

integer 
1 to number of CPUs 
available 

FleetPy can efficiently run a simulation 
on each CPU simultaneously, which 
permits adding replications without 
adding significant computation time. 

Max iterations in the inner loop 
 
The maximum number of iterations 
permitted for evaluating a single NSM 
design.  

integer 
1 and higher. 20 is a good 
starting setting. 

This serves as a timeout to prevent 
endless computation if convergence is 
not reached (according to the stop 
threshold). 

Stop threshold for the inner loop 
 
Percent point NSM mode share 
difference between one iteration and 
the next  

Float 
Usually less than 1.0 (one 
percentage point). Even 
as low as 0.02. 

Smaller values will require more 
iterations and may cause a timeout 
(max iterations) before convergence  

 

2.3.3. Metaheuristic approach 

We employ a nested adaptive stochastic local search metaheuristic to explore the space of ride-pooling 

service designs, focusing on identifying high-performing configurations through hierarchical, adaptive search. 

Given the strong interaction between network structure, operational mode, and other design parameters, we 

use a nested search strategy to manage complexity and prioritize more impactful decisions early in the 

process. 

At each iteration of the heuristic, a network setting is randomly selected from a predefined set, guided by an 

adaptive probability distribution that favours previously successful configurations. Next, a mode of operation 

is sampled, and if a few-to-many structure is chosen, hub locations are also randomly selected from a 

candidate list. 

Other design parameters – such as fleet size, vehicle capacity, response time window, and maximum detour 

– are initialized based on the best-known configuration so far. These parameters are then optimized 

incrementally: for each, we evaluate the impact of increasing or decreasing its value by a single unit. If an 

improvement is observed, we continue to explore in that same direction until no further gains are found. 

To manage computational load while ensuring robust results, simulation fidelity is progressively adjusted 

throughout the evaluation process. Each design is initially evaluated using a single full set of parallel 



 

 

    

simulations and a limited number of inner loop iterations (e.g., 10). During this stage, we monitor the variance 

of the KPIs. If high variance persists across several consecutive evaluations – indicating that differences 

between designs are not statistically significant – the number of replications is incrementally increased to 

enhance estimate precision and enable more reliable comparisons between candidate configurations.  

In parallel, we track the number of inner loop iterations required for KPI values to stabilize, defined as the 

point at which the relative change falls below a specified threshold. If, over a user-defined number of 

consecutive evaluations, convergence is consistently achieved in fewer than the maximum allowed iterations, 

the inner loop limit is reduced to save computational effort in outlier cases. Conversely, if convergence 

repeatedly requires more iterations than the current limit, the maximum number of inner loop iterations is 

increased to ensure more accurate performance assessments. The outer loop accepts evaluation results 

even when the maximum number of iterations has been reached. A pseudo code of the algorithm is 

presented in Table 3.  

 
Table 3: Outer-loop heuristic 

Algorithm: Nested adaptive stochastic local search 

Input: an initial solution 𝑥 , network_distribution, modes_of_operation, hub_candidates, num_replications, 

inner_loop_limit 

 

𝒙𝒃 = 𝒙;   /initializing best solution 

 

While stopping criteria is not met: 

𝑥𝑡. 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ← samplenetwork(network_distribution) 

𝑥𝑡. 𝑚𝑜𝑑𝑒 ← samplemode(modes_of_operation) 

if 𝑥𝑡 .𝑚𝑜𝑑𝑒 == "few-to-many": 

𝑥𝑡. ℎ𝑢𝑏𝑠 ← samplehubs(hub_candidates) 

𝑥𝑡. 𝑓𝑙𝑒𝑒𝑠𝑖𝑧𝑒 = 𝑥𝑏 . 𝑓𝑙𝑒𝑒𝑡𝑠𝑖𝑧𝑒 

𝑥𝑡. 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦=𝑥𝑏 . 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

𝑥𝑡. 𝑟𝑒𝑠_𝑡𝑤=𝑥𝑏 . 𝑟𝑒𝑠_𝑡𝑤 

𝑥𝑡. 𝑚𝑎𝑥𝑑𝑒𝑡𝑜𝑢𝑟=𝑥𝑏 . 𝑚𝑎𝑥𝑑𝑒𝑡𝑜𝑢𝑟 

for param in { 𝒇𝒍𝒆𝒆𝒔𝒊𝒛𝒆, 𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚, 𝒓𝒆𝒔_𝒕𝒘, 𝒎𝒂𝒙𝒅𝒆𝒕𝒐𝒖𝒓}: 

for direction in [+1, -1]: 

while True: 

𝑡𝑒𝑚𝑝 = 𝑥𝑡 

𝑡𝑒𝑚𝑝. [𝑝𝑎𝑟𝑎𝑚] += direction 

𝑡𝑒𝑚𝑝. 𝐾𝑃𝐼 =inner_loop(𝑡𝑒𝑚𝑝, num_replications, inner_loop_limit) 

if 𝑡𝑒𝑚𝑝. 𝐾𝑃𝐼 > 𝑥𝑡. 𝐾𝑃𝐼 

𝑥𝑡 =𝑡𝑒𝑚𝑝 

              else: 

break   

if 𝑥𝑡 . 𝐾𝑃𝐼 > 𝑥𝑏 . 𝐾𝑃𝐼 

𝑥𝑏 = 𝑥𝑡 

network_distribution=updatenetworkdist(network_distribution) 

mode_of_operation=updatedmodedist(modes_of_operation) 

hub_candidates=updatehubdist(hub_candidates) 

if high_variance_detected_over_recent_evaluations(): 

num_replications += 1 

 

if inner_loop_converges_quickly(): 

inner_loop_limit -=1 

elif inner_loop_converges_slowly(): 

inner_loop_limit += 1 

 

return 𝑥^𝑏 



 

 

    

2.4. Output 

The framework's output includes a set of key performance metrics, classified into service-level, behavioural, 

and operational indicators. Service-level indicators reflect user experience and include the percentage of 

requests served and the average waiting time. Mode split metrics reflect user travel behaviour by indicating 

the distribution of selected transportation modes – such as private vehicles, public transit, walking, cycling, 

and NSM services. These metrics help evaluate how attractive the shared service is relative to other available 

options. Operational indicators, such as the total driving cost (e.g., kilometres driven), measure the 

system’s efficiency and resource utilization. 

Together, these outputs provide a comprehensive basis for evaluating and comparing different service 

configurations. In the outer loop, we employ a composite objective function defined as a weighted sum of the 

main KPIs. Table 4 summarizes the main KPIs. 

Table 4: Simulation-Optimization main KPIs 

KPIs  variable type Description 

Service level 

% of served 
request 

number 
Share of requests that were successfully 
fulfilled 

avg. wait time number Mean time from request to pickup 

Mode split % usage of NSM number 
Share of users selecting NSM over other 
travel modes 
 

Operational 
indicators  

cost (drive+ km) number 

Total kilometres driven, reflecting service 

cost and vehicle utilization 

  



 

 

    

2.5. How to use it 

2.5.1. Installation 

The SUM Framework code is available at https://github.com/AUTOlab-TAU/SUM-Optimization. The 

framework has been tested in the following environment: python 3.11.1 (python.org), biogeme (3.2.13), 

fleetpy (1/7/2024), gurobipy (11.0.1), numpy (1.23.5), pandas (1.5.2), scipy (1.14.0). Further integration with 

its main dependencies, FleetPy and Biogeme, to permit easier installation is planned. 

  

2.5.2. Framework Architecture 

The framework consists of two main files, outer_loop.py and inner_loop.py and a number of helper files in 

the util folder. The outer loop calls the inner loop with a dictionary of NSM design and loop control parameters. 

When the inner loop’s stop condition triggers, it returns a dictionary of performance indicators, which the 

outer loop uses to inform the next NSM design. 

The framework is configurable through these variables in util/setup.py. Table 5 and Table 6 display the key 

folders and variables, respectively. 

Table 5: Framework architecture – key folders 

Variable Description 

base_path Path to the home folder to the analysis 

work_path Path to folder for intermediate files 

result_path Path to folder for NSM design results for every iteration, averaged across 
repetitions 

fleetpy_path Path to FleetPy base folder, under which lie the src, studies, and data folders. 

requests_file_path Path to the sample frame 

https://github.com/AUTOlab-TAU/SUM-Optimization


 

 

    

 

Table 6: Framework architecture - variables 

 

2.5.3. Defining your use case 

This example demonstrates setting up all aspects of an on-demand pooled taxi service within a 

neighbourhood, evaluating several designs, and generating basic tables and figures that show the how the 

designs perform and the mode share they attract. 

Road Network 

The FleetPy package includes a script, osm_converter.py, for downloading OpenStreetMap data and 

converting it into the node and edge files that FleetPy requires. The script is located in 

FleetPy/src/preprocessing/networks/extractors. The framework includes a short example in the util folder 

called create_network.py of how to call just the needed functionality to save a network using the by_name 

option (e.g. “Tel Aviv, Israel”). After execution, the files edges.csv and nodes.csv will be where they belong 

in FleetPy\data\networks\city_name_osm\base.  

FleetPy’s simplifies the raw OSM data, leaving nodes only where 

streets connect to speed up routing calculations. Figure 3 shows how 

the original OSM nodes (dots) align with FleetPy’s routing network 

(circles) and a GIS housing layer (squares) for a section of Jerusalem. 

Origins and destinations must be assigned to a node. Future versions 

of the framework will permit inserting nodes at specific coordinates to 

represent places of interest like mobility hubs, schools, and shopping 

areas.  

Variable Description 

requests_file_ratio A floating point number representing how much larger the sample frame is 
compared to actual demand.  

demand_ratio 
An intuitive way to scale demand. 1.0 is the demand as originally specified. 1.5 is 
150% demand.  

weight_alpha 
Controls the balance between prior values and new values when the framework 
updates NSM metrics and the mode choice model. Values below 0.5 favor the 
prior value. 

modes 
A list like ["walk","bike","car","pt","nsm"] used to identify the various modes. In 
some cases the indexes are used (e.g. 0 = walk) 

avails 

A dictionary for setting what modes are available either probabilistically (if set to a 
float between 0.0 and 1.0 inclusive) or per traveller (if set to a column with 0 and 1 
values). This can be used, for instance, to show which travellers own cars or to 
apply a threshold to a per TAZ or per row walkability or transit accessibility index. 

init_model 

The initial mode choice model in dictionary form 

e.g. {“ASC_WALK”:4.0, “B_TIME”:-0.12, ...}  

Figure 3: OSM nodes vs. FleetPy’s 
routing network 



 

 

    

OSM streets datasets in some locations lack information about the maximum or typical velocity on an edge. 

The converter defaults to 30km/h. While incorrect or incomplete data reduces FleetPy’s accuracy and validity, 

the convertor permits researchers to get up and running very quickly and is highly recommended. Since 

FleetPy uses simple, open formats, custom solutions using city GIS data or mapping APIs are possible, but 

not currently part of the framework. 

Demand 

Configuring demand requires generating the sample frame and setting initial values for the mode choice 

model and NSM metrics.  

Generating the Sample Frame 

A framework user must create an appropriate trip sample frame for the area under investigation if a pool of 

potential trips does not exist. Generating the sample frame takes time, but is only performed once, offline. 

Sampling from it online (i.e., while the inner loop runs) is much faster. Larger sample frames require more 

time to compute initially and require more disk space. However, they enable more varied demand and 

therefore, more robust and trustworthy results. Larger samples (travel volumes) result in slower simulations 

and longer optimization times. While it is necessary to study the true demand volume due to its nonlinear 

impacts on the performance of a NSM service, relying on smaller volumes during initial setup and 

configuration is recommended. 

The OD matrix shows the demand for travel between any two TAZ during a specific time period. The flow will 

often be strongly asymmetric during the morning and evening commutes. Dividing the flow by the duration 

permits estimating the average number of travellers per unit of time, usually per hour. Then, the Poisson 

distribution can be used to create synthetic data that continues to mirror, statistically, the original, empirical 

demand pattern. Each trip in the sample frame must be enriched with all the information necessary for 

calculating the utility (attractiveness) of each travel mode for that particular origin and destination.  

The framework includes the script, generate_requests_OSM.py in the util folder for generating a demand 

sample frame (the pool of trips to sample from). This can be used to generate demand for just a particular 

neighbourhood or set of neighbourhoods as shown in Figure 4. The script requires: 



 

 

    

 

(1) An OD matrix in the format of a table with origin and destination using TAZ ids and a time period in the 

last column. For the example study, the development team obtained commercial TAZ-level data from Decell 

to understand current demand volume. Decell differentiates between pedestrian, bike, train, and motorized. 

This last category combines private car and public transportation by bus and therefore cannot directly reveal 

mode choice preferences across all available modes. 

(2) A node-TAZ mapping in the format of a table with two columns, FleetPy node IDs and corresponding 

TAZ ids. This can be generated using a GIS system (PostGIS, Python, or a GUI-based tool) using a “within” 

query on every node (point) or a “contains” query on every TAZ (polygon) 

(3) A router like Open Route Service, which can be installed fairly easily using the docker image. 

The script divides the demand volume by the duration to determine the average number of travellers per unit 

of time, usually by the hour. Then, the Poisson distribution is used to create synthetic data that continues to 

mirror, statistically, the original, empirical demand pattern. The framework generates a CSV file of user-

defined size. It selects a random start and end node within the origin TAZ and destination TAZ and includes 

the time and distance for every mode. The user may then enrich the sample frame with additional data as 

required by the utility formulas employed. The sample frame used in the case study contained the columns 

shown in Table 7. 

Figure 4:Origins and destinations distribution in Yuvalim-Ganim 

https://www.decell.com/
https://github.com/GIScience/openrouteservice
https://giscience.github.io/openrouteservice/run-instance/running-with-docker


 

 

    

Table 7: Description of Sample Frame Columns 

 

 

 

 

Parameter 
(Column) 

Description Source 

orig_taz 

 
Origin Traffic Analysis Zone 

These are the fundamental parameters describing 
demand across all modes, obtainable through travel 
surveys, automatic or manual counts, and data 
providers (e.g., Decell). These parameters are often 
summarized in a TAZ origin-destination matrix for a 
known time period but without per trip travel times. 
A detailed and representative list of trips can 
therefore be generated via a Poisson distribution.  

dest_taz 
 

Destination Traffic Analysis 
Zone 

rq_time Request time (start of trip) 

start 
Starting node in FleetPy 
network 

Depending on the NSM to be investigated, the SUM 
Framework’s simulation module may require 
additional demand details. For example, FleetPy 
relies on a node and edge network derived from 
Open Street Map and the sample frame generation 
script assigns each trip to a random node in the 
origin TAZ and in the destination TAZ via a user 
provided lookup table.  

end 
Ending node in FleetPy 
network 

orig_x Origin X-Coordinate 

orig_y Origin Y-Coordinate 

dest_x Destination X-Coordinate 

dest_y Destination Y-Coordinate 

car_time Private car travel time (sec) 

These common parameters for utility calculation 
can be generated from routing services (e.g. Google 
Routes API or openrouteservice).The sample frame 
generation script provides a working example of 
using such a service. 

car_dist 
Private car travel distance 
(km) 

bike_regular_time Regular bike travel time (sec) 

bike_regular_dist 
Regular bike travel distance 
(sec) 

walk_time Walk travel time (sec) 

walk_dist Walk travel distance (km) 

pt_time Public transit travel time (sec) 

pt_dist 
Public transit travel distance 
(km) 

car_cost Cost of car (fuel use) 
User supplied (local knowledge) 

pt_cost Cost of public transit (ticket) 

request_id Unique request id User supplied, random, or sequential 

orig_median_pt 
Median PT availability in start 
TAZ 

The SUM framework user provides the utility 
formulas for each mode. These formulas draw from 
additional columns in the sample frame. In our 
Jerusalem experiments, we used a locally defined 
indicator of public transit availability to estimate the 
utility of public transit. 

dest_median_pt 
Median PT availability in dest 
TAZ 

PTabove25 Boolean, both values > 25 

PTabove50 Boolean, both values > 50 

PTabove75 Boolean, both values > 75 

https://www.decell.com/
https://developers.google.com/maps/documentation/routes
https://developers.google.com/maps/documentation/routes
https://github.com/GIScience/openrouteservice


 

 

    

 

Setting initial values 

Initial values are declared in util/setup.py. The initial values for the mode choice model and NSM metrics 

determine how many travellers choose the NSM during the first iteration of the inner loop. For the example 

study, the developers started with mode choice model parameters derived from the City of Jerusalem’s most 

recent travel preferences survey (2017), which did not include a NSM option. The initial values are detailed 

in Table 8-11. The alpha weight for the case study was set to 0.25 in the same file. 

Initial Mode Availability 

Table 8: Initial values – mode availability 

Variable Value Note 

Walk 1.0 Assume everyone can walk 

Bike 1.0 Assume everyone has access to a bike  

Car 0.67 67% car ownership rate in the 2017 survey 

PT 1.0 
Experimented with PT available everywhere and PT available only in TAZ surpassing a 
given transit availability index. 

NSM 1.0 
Assuming anywhere-to-anywhere service with operating area defined through 
demand generation 

 

Initial ASCs 

Table 9: Initial values - ASCs 

Variable Value  Note 

ASC_WALK 4.95  

ASC_BIKE -1.09 Jerusalem is very hilly 

ASC_CAR 4.80  

ASC_PT 4.70  

ASC_NSM 4.75 The mean of car and PT ASCs 

 

Initial Betas 

Table 10: Initial values - betas 

Variable Value  Note 

B_COST -0.35 COST in shekels. From survey. 

B_TIME -0.12 TIME in minutes. From survey. 

B_RISK 0.0 
RISK 0.0 to 1.0. Arbitrary. Assume indifferent to risk. Ensures high number of 
initial users. 

 

Value of Time (VoT) can be computed as B_TIME/B_COST = -0.12 * 60 min/hr / -.35 = 20.57 shekels per 

hour, well within the range calculated by government agencies for various demographic groups in Israel. 



 

 

    

 

Initial NSM Metrics 

Table 11:Initial values – NSM Metrics 

Variable Value  Note 

Occupancy 1.0 
Anywhere-to-anywhere service with pooling due only to small size of 
focus area. Occupancy not currently used in utility formulas 

Service_rate 0.2  

Nsm_car_time_ratio 1.5  

Nsm_wait_time 150  

Nsm_travel_time 370  

Car_time 500  

 

After the initial or current model and NSM metrics are used to determine mode choice, the inner loop calls 

the simulator. 

 

Simulation 

The framework interacts with FleetPy entirely through the filesystem. During every iteration, the inner loop 

draws a random sample of travellers for every repetition, determines mode choice for every repetition, and 

saves a separate request file in FleetPy format for every repetition containing the information about just the 

travellers who intend to use the NSM. It saves these rq-files (“rq” for request) in 

FleetPy\data\demand\your_city_demand\mached with names like SUM_i000_r000 to signify the first iteration 

and repetition. The framework overwrites these files everytime it runs. There is no reason to keep them if 

you already have results and are short on storage space. 

After writing all the rq-files, the inner loop references them when it overwrites scenario_config.csv in 

FleetPy\studies\your_city\scenarios, specifying a new scenario for each request file, see for example 12. It 

then executes run_private_your_city.py, which can be configured to run multiple scenarios (repetitions) 

simultaneously using FleetPy’s excellent parallelism. When all simulations have completed, the inner loop 

loads FleetPy’s evaluation files and computes the mean of key metrics. 

Table 12: Example of scenario files 

scenario_name rq_file 

SUM_i000_r000 i000_r000_nsm.csv 

SUM_i000_r001 i000_r001_nsm.csv 

SUM_i000_r002 i000_r002_nsm.csv 

SUM_i000_r003 i000_r003_nsm.csv 

SUM_i000_r004 i000_r004_nsm.csv 
 



 

 

    

FleetPy’s wiki documents many of the package’s features. While not required, if the street network is much 

larger than the demand area, adding a simple CSV file to 

FleetPy\data\fleetctrl\initial_vehicle_distribution\your_city_osm to focus the starting position of vehicles 

greatly improves NSM performance, especially when not simulating many hours of service. The file looks 

like Table 13. After create the file, edit the framework’s util\fleetpy.py file, which describes how constant 

config will be overwritten. Adjust the value of fleetpy_constant_config to reflect the name of your file where 

you see the key “op_init_veh_distribution”. 

Table 13: example of vehicle starting node specification 

node_index probability 

219 0.00034002 

473 0.00034002 

474 0.00034002 

475 0.00034002 

491 0.00034002 

497 0.00034002 
 

2.5.4. Running the framework 

Once installed, configured with the proper paths, and provided all the input it requires, the framework is 

executed by simply running outer_loop.py. This script will quickly call the inner_loop with its first NSM design 

to evaluate, and printing a lot of information to the terminal window concerning sampling, simulating progress, 

and the current iteration.  

2.5.5. Interpreting the output 

The inner loop collects several outputs over the course of its iterations, including mode split results, NSM 

performance metrics, and the updated coefficients of the mode choice model. These outputs can be used to 

analyse the performance of a given NSM configuration and to track the convergence behaviour of the inner 

loop.  

The following figures present the framework’s results for the 20,000 travelers who participate in the 2-hour 

morning commute in the Yuvalim-Ganim area. The NSM service uses a fleet of 20 vehicles, each with a 

capacity of 20 seats, leftover from a discontinued on-demand service in Jerusalem called TikTak. The service 

in the case study operates in a many-to-many configuration, with an enforced operator response time of 5 

minutes and a maximum detour delay limited to 100% of the direct travel time between origin and destination. 

The price of the service is set at 2 NIS regardless of time or distance, practically a free ride and highly 

attractive if dependable and time efficient.  

Figure 5 shows the evolution of mode split over the iterations of the inner loop. The figure includes five 

curves, each representing one of the following modes: bike (red), car (lime), NSM (green), public transport – 

PT (blue), and walking (purple). As observed, the NSM share decreases rapidly in the initial iterations, while 

the shares of the other modes increase accordingly. The NSM stabilizes at around three percent of total trips 

after twenty iterations. This downward trend can be attributed to assuming travellers ignore the risk of not 

being served. The framework corrects this error. This suggests that it is at least somewhat robust against 

incorrect initial assumptions. Figure 6 displays the evolution of the average wait time of served requests over 

the inner-loop iterations. Again, the initial wait time provided to the framework was overly optimistic. In the 

first five iterations the wait time increased rapidly while the system was overwhelmed with requests. Then 

https://github.com/TUM-VT/FleetPy


 

 

    

the wait time fell slowly as the mode split began to stabilize. Figure 7 shows the travel time ratio (nsm vs 

car), occupancy, and service rate. Since the fleet size is fixed, occupancy reflects the number of users. Wait 

time (previous figure, travel time ratio, and occupancy are all positively correlated, suggesting a system 

struggling to meet demand. The initial low service rate further underscores this struggle.    

 

Figure 5: Change in mode split in the inner loop for a many-to-many service in the Yuvalim Ganim area. The service 
employs a fleet of 20 vehicles with 20 seats each. The operator is permitted a response time of 5 minutes and detour 

delay of 100%. 

 

 
Figure 6: Change in NSM wait time in the inner loop for a many-to-many service in the Yuvalim Ganim area. The 

service employs a fleet of 20 vehicles with 20 seats each. The operator is permitted a response time of 5 minutes and 
detour delay of 100%. 

Figure 8 and 9 below show the change in the mode choice model parameters as travellers receive more 

accurate information about the NSM service. The initial values for walking, biking, using a private car, and 

taking public transit were all computed from Jerusalem’s 2017 mobility preferences survey, which did not 

have an NSM option. After the initial parameters for measuring NSM utility are used to compare it against 

the existing options and travellers permitted to choose amongst all options a new model is computed. This 



 

 

    

causes the recalibration of all the ASCs seen in Figure 8. The initial estimate that the ASC for the NSM lies 

somewhere between that of the private car and PT proves incorrect. Figure 9 shows that even though the 

betas for cost and time are permitted to vary, they remain fairly stable and the new beta measuring the risk 

of not receiving NSM service moves significantly downward. This is not surprising because the framework 

forces all travellers who did not receive service to choose an alternative mode to reach their destinations 

before the model is recomputed. The result was shown in the earlier figures as the service’s mode split 

dropped significantly, which permitted its service rate to eventually begin to rise.  

 
Figure 7: Change in NSM car time ratio, occupancy, and service rate in the inner loop for a many-to-many service in 
the Yuvalim Ganim area. The service employs a fleet of 20 vehicles with 20 seats each. The operator is permitted a 

response time of 5 minutes and detour delay of 100%. 

 

 
 

 
Figure 8: Change in alternative specific constants (ASCs) in the inner loop for a many-to-many service in the Yuvalim 
Ganim area. The service employs a fleet of 20 vehicles with 20 seats each. The operator is permitted a response time 

of 5 minutes and detour delay of 100%. 

 



 

 

    

 
Figure 9: Change in beta coefficients in the inner loop for a many-to-many service in the Yuvalim Ganim area. The 

service employs a fleet of 20 vehicles with 20 seats each. The operator is permitted a response time of 5 minutes and 

detour delay of 100%. 

Table 14 presents results for several key performance indicators – including mode split, number of served 

requests, acceptance rate, average vehicle occupancy (in passengers), and average passenger wait time – 

across configurations with 5, 10, and 20 vehicles, and service prices set at either 2 or 20 NIS. As expected, 

the number of NSM users increases as the service becomes more affordable or as the fleet size expands. 

Notably, these additional users are primarily drawn from three existing modes: walking, private car, and 

public transport (PT). While the goal is to attract private car users, a portion of the NSM mode share is 

diverted from more sustainable alternatives such as walking and PT. This substitution effect should be 

carefully considered in the service design to avoid the unintended "cannibalization" of PT usage. 

Moreover, in all tested configurations, the acceptance rate remains consistently high, suggesting robust 

system performance. An additional insight is that when the fleet size is doubled, the number of served 

requests increases by more than a factor of two, indicating a phenomenon of increasing returns to scale in 

service capacity. 

Table 14: Mode Split and NSM performance for varying fleet sizes and service prices 

Fleet Cost(₪) Walk Bike Car PT NSM Served 
Acpt. 
Rate 

Occ Wait(min) 

5 

2 5,384 
33.70% 

147   
0.92% 

6,207 
38.86% 

4,163 
26.06% 

73     
0.46% 

63 86.37% 0.77 2:54 

20 5,386 
33.71% 

151   
0.94% 

6,238 
39.05% 

4,181 
26.17% 

19     
0.12% 

19 98.59% 0.66 2:22 

10 

2 
5,317 
33.29% 

147   
0.92% 

6,157 
38.54% 

4,137 
25.90% 

216   
1.35% 

175 81.02% 0.96 3:10 

20 5,382 
33.69% 

153   
0.96% 

6,222 
38.95% 

4,202 
26.30% 

15     
0.10% 

15 99.88% 0.72 1:50 

20 

2 5,235 
32.77% 

146   
0.92% 

6,077 
38.05% 

4,035 
25.26% 

480   
3.01% 

380 79.27% 1.09 3:22 

20 
5,367 
33.60% 

149   
0.93% 

6,242 
39.08% 

4,196 
26.27% 

20     
0.13% 

20 99.86% 0.79 1:13 



 

 

    

3. ExMAS-SimFLEX Framework 

3.1. Data 

3.1.1. Demographics 

For our report, we used real-world data on the population distribution within the city. 

Figure 10 presents the population distribution of Krakow, while Figure 11 shows residential locations (address 

points). 

 

Figure 10: Demographics of Krakow1 

For our analysis, we required specific address points along with the associated number of residents. We 

based our work on demographic data from October 2023, provided by ZTP Krakow. 

 

Figure 11: Address points 

3.1.2. Origin-Destination Matrix (ODM) 

To analyse the demand for NSM at a microscopic level, we used a traffic model (the number of trips during 

peak hours between city zones) obtained from the Krakow Municipality. These data allow us to determine 

for each starting area the distribution of its target destinations with the help of disaggregating macro-level 

 

 

1 The data is available at: msip.um.krakow.pl. 

https://msip.um.krakow.pl/kompozycje/?config=config_stat.json&extent=2153533.4349875976,6418384.2463136995,2300292.5292949383,6491381.608325944,102100


 

 

    

data from the ODM into synthetic agents representing individual travellers. This information is used in the 

second stage of our analysis. 

3.1.3. Road network in the city 

We rely on publicly available OpenStreetMap (OSM) data, which enables detailed analysis of travel routes 

by car (based on a parametrised detailed road network) and on foot (taking into account pedestrian 

pathways). 

3.1.4. Public transport routing 

The trip planning software OpenTripPlanner (OTP)2 is used to integrate feeder buses with public transport 

networks and to compare the performance of this integrated system with a public transport-only alternative. 

It serves as a public transport routing tool, incorporating different transport modes, such as buses, trains, 

trams, etc. The OTP tool finds the optimal routes based on real-time and scheduled transit data, considering 

travel time, number of transfers, and walking distances. 

3.1.5. GTFS 

We use publicly available General Transit Feed Specification (GTFS) files3, updated as of March 2024, 

provided by the city for PT trip planners (such as Google Maps and JakDojade). These files allow us to 

search for the optimal connections for a given pair of coordinates (origin-destination) and departure time. 

The dataset includes bus and tram timetables and stops, but unfortunately does not cover rail services within 

the city (SKA), which could be relevant for the Bronowice area. 

3.1.6. Algorithm NSM 

NSM is a demand-responsive transport service when travellers share their rides with other travellers who 

travel to / from the same hub. Our analysis focusses on the morning peak hour. During this period, the 

operator collects requests from travellers who wish to reach the hub and dispatches feeders (on-demand 

buses). These on-demand small-capacity buses will pick up travellers from designated pick-up points (stops) 

for pooled rides and drive them to transfer points (hubs) such as high-frequency tram/train stops of (Figure 

12). From there, travellers reach their destination by regular and already efficient public transport. 

 

 

2 https://www.opentripplanner.org/ 
3 The data is available at:https://gtfs.ztp.krakow.pl/ 

https://www.opentripplanner.org/
https://gtfs.ztp.krakow.pl/


 

 

    

 

Figure 12: Example of the spatial distribution of address points (green), tram stops (in pink), and light rail hubs (yellow) 
for Area3 

The optimization task for NSM is to find a route that allows for the picking up travellers from multiple pick-up 

points and transporting them to the destination while ensuring sufficient comfort (i.e., minimal delay compared 

to a trip without NSM). We rely on the ExMAS algorithm (Kucharski & Cats, 2020). As a fundamental 

assumption, we require that shared rides (consisting of more than one pick-up point) must remain attractive 

to travellers (i.e., their utility of NSM travel is greater than an alternative travel, e.g. by PT or own car). 

Based on the solution, we can calculate key NSM characteristics (comparing a single vehicle with multiple 

pick-up points to a single vehicle with a single pick-up point), such as: 

- Reduction in vehicle kilometres travelled (ΔTv). 

- Increase (decrease) in passenger comfort (ΔUp). 

- Average vehicle occupancy (O)4. 

The algorithm is applied in both stages of our analysis. 

3.2. ‘ORIGIN-HUB’ ANALYSIS 

In the first simplified stage of the analysis, we focus on identifying the best hubs for each area and comparing 

the NSM potential across different areas. We compare 12 areas, each with one to three corresponding hub5. 

At this stage, we only consider the population potential. We do not take into account travel motivations, 

destinations, the existing modal split or the current PT network. We assume that every traveller who uses 

the system wants to reach a hub. We evaluate the operating parameters of the system accordingly. 

All these simplifications used in the first stage of the analysis disappear in the second stage, where (for two 

selected areas indicated in the first part) we take into account in detail the traffic patterns and the public 

transport offer. 

3.2.1. Areas 

The selected areas and corresponding hubs (including tram stops) are shown in Figure 13. 

 

 

4 Detailed description in our study Shulika et al., 2024 . 
5 Detailed description in our study Shulika et al., 2025 . 

https://www.sciencedirect.com/science/article/pii/S0191261520303465?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0966692323002399?via%3Dihub
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5026301


 

 

    

 

Figure 13: Krakow preselected areas (in orange) with corresponding hubs (in yellow), tram stops (in pink) and train 

stops (in blue) 

3.2.2. Methodology 

We propose a parameter-free approach that utilises probabilistic demand fractions to simulate potential 

demand. We consider a fraction of the residents who must be interested in the service sufficient to achieve 

the minimum required thresholds of a new service efficiency. Areas with the lowest resident interest required 

to meet efficiency thresholds are considered to be the most favourable for service implementation. After 

identifying the most promising area and hub combination, we establish benchmarks to understand the 

service's early-stage performance. This approach enables us to evaluate the potential of a new on-demand 

pooled transit feeder service and identify the most promising area for its launch, even without actual demand 

data. Our approach to selecting a preferred area to implement integrated on-demand pooled transit feeders 

with PT is illustrated in Figure 14. 

The process starts with data collection, including population distribution, road network, candidate areas, and 

public transport hubs (one or more for each area). For each combination of pre-selected area and hub 

location(s), and at each demand fraction level and replication, we apply the utility-based ExMAS algorithm 

to match travellers to the pooled rides.  



 

 

    

 

Figure 14: An overview of the applied methodology for selecting a preferred area to implement on-demand pooled 

transit feeders (NSM service) 

We start with a scenario where all travellers use individual ride-hailing. Then we determine the extent to 

which ride-hailing can be replaced by ride-pooling while maintaining traveller satisfaction and vehicle mileage 

reduction. Travellers who cannot be efficiently matched on shared rides continue to use individual ride-

hailing. Next, we evaluate the potential of on-demand service using three KPIs: mileage reduction, passenger 

satisfaction, and occupancy. We assess the performance of the system using KPIs derived from the 

simulation results.  

Initially, we assess the progression of these KPIs across varying demand fractions, identifying the most 

promising hub within each preselected area. Following this, we compare the candidate areas by identifying 

the proportion of residents (fraction of demand) who must be interested in the service, denoted as the level 

α, to meet the following minimum efficiency thresholds required to launch the new service: 

- ΔTv(vehicle hours reduction) ≥ 0.1: the launching of shared rides (instead of individual ones) allows 

for a reduction of vehicle kilometres by at least 10%; 

- ΔUp (travellers utility gains) ≥ 0.025: passenger comfort improves by at least 2.5% compared to 

individual travel. For the analysed scenario of free on-demand bus service, this measure ensures 

that passengers do not encounter significant discomfort associated with a new service; 

- O (occupancy) ≥2: the average vehicle occupancy exceeds 2. 

After selecting the most promising combination of area and hub, we go deeper to establish the following 

benchmarks for the selected area and hub combination, providing the municipality with valuable insights into 

what to expect when initiating the new service: the minimum demand fraction needed to successfully pool 

travellers into shared rides, the demand level at which ride-pooling potential starts to grow, and the demand 

level necessary for the service to consistently meet its key performance indicators. Scripts for reproducible 

results are available in the public repository (Github). 

https://github.com/OlhaShulikaUJ/SUM_project/tree/main/NSM


 

 

    

3.2.3. Results 

Detailed results are presented in Erreur ! Source du renvoi introuvable.5. For each area-hub combination, 

we indicate the minimum NSM interest threshold (α) required to achieve each of the three efficiency levels. 

The minimum population fraction value '-' (Table 15) indicates that the key NSM characteristics did not meet 

any efficiency thresholds for α between 0% and 5%6. 

Table 15: Ranking of candidate areas 

 

Erreur ! Source du renvoi introuvable.15 illustrates the hub selection process using our approach, with 

Area 3 as an example. In this figure, the higher line indicates superior performance for hub 1 compared to 

hub 2, establishing hub 1 as the preferred hub based on key performance indicators. Similarly, in Erreur ! 

Source du renvoi introuvable.16, the line for the most promising Area 9 frequently appears above the 

others, indicating its higher potential of the ride-pooling service. This visual ranking illustrates how the method 

supports data-driven decision-making by clearly delineating areas and hubs that best align with the new 

service goals.  

 

 

6 For area 9 we considered the upper range of 3%, but it does not matter, as the efficiency thresholds were exceeded 
earlier. 



 

 

    

 

Figure 15: Three key performance indicators of ride-pooling plotted against the fraction of demand for Area 3. Lines 
represent the average performance across multiple simulations, while dots represent individual simulation results. Both 

hubs in Area~3 showed similar trends, but hub 1 has a slight edge in potential 

 

Figure 16: Three key performance indicators of ride-pooling plotted against the fraction of demand for pre-selected 

areas and the most promising corresponding hubs. Horizontal dashed red lines represent the set thresholds 

The results identify Area 9, paired with Kraków Mydlniki (PKP), as the most promising candidate (Table 15). 

Higher-ranking areas, such as Area 9 (Bronowice) and Area 3 (Skotniki), exhibit a favourable balance of 

population density, hub distance, and infrastructure suitability for pooled transit. In contrast, lower-ranking 

areas, such as Area 10, with a high population density but close proximity to the Dunikowskiego hub, 

demonstrate the least potential, as the need for additional feeder services decreases with shorter distances 

to public transit options. 

For the top-ranked Area 9, we establish three benchmarks to assess early-stage service performance (Figure 

17). Ride-pooling potential becomes significant at demand levels of 0.05%, with efficiency thresholds met at 

0.1%, 0.5%, and 0.7% for the three KPIs. These benchmarks guide municipal planning, enabling phased 

implementation aligned with demand growth projections. 



 

 

    

 

Figure 17: KPIs and three benchmarks for the combination of Area 9 and Hub 9 ’Kraków Mydlniki (PKP)’, plotted 
against demand levels. Pooled trips start at a demand fraction of 0.025%, with a ride-pooling potential increasing from 

0.05%, and three KPIs reaching target levels at 0.1%, 0.5%, and 0.7%, respectively. Horizontal dashed red lines 
indicate established KPI thresholds, while vertical blue lines mark three benchmarks 

3.2.4. Limitations 

Despite its merits, our study has certain limitations. The ExMAS algorithm is limited to point-to-point ride-

hailing, assessed only in comparison to solo ride-hailing. Additionally, demand must be predetermined, and 

the fleet is not explicitly managed. 

The experiment was conducted in Krakow, a mid-sized European city, using a medium-scale sample. Our 

analysis focusses solely on the first-mile ride from pick-up points to hubs, simplifying the model, as the 

efficiency of on-demand pooled transit depends on the entire trip taken by travellers. Some areas, particularly 

those farther from the centre, may experience longer travel distances. 

The analysis also assumes a single predetermined hub for all travellers leaving the area, without considering 

individual hub selection. Furthermore, the study only considers the population potential, ignoring factors such 

as travel motivations, goals, current transportation habits, and existing public transport options. We assume 

that all travellers intending to use the system aim to reach the hub, and we focus on the system operation 

parameters. 

Future research should consider the entire journey, including both the feeder segment and the public transit 

segment, to provide a more comprehensive assessment of the attractiveness of public transport. Examining 

factors such as demographics and time-of-day variations could improve demand estimation and service 

predictability. Further studies could also test the scalability of this method in different urban contexts, allowing 

cross-regional comparisons and deeper insight into the role of on-demand feeder services in complementing 

traditional public transit. 

By applying this methodology to various urban settings, we can identify universal patterns in shared mobility 

potential and inform the development of effective on-demand feeder services. 

3.3. Analysis ‘Integrated NSM Vs PT’  

In this stage, we consider a scenario in which travellers can choose between two available options: 

1. F - an integrated trip, where an on-demand bus service (NSM) as a first- or last-mile connection from 

an origin to a designated hub. From the hub, public transport completes the trip to the final destination 

(the trip from the hub to the final destination is denoted HD). 

2. PT - a trip entirely serviced by the existing public transport system from the origin to the destination 

(denoted as OD). 



 

 

    

We introduce SimFLEX (Simulation Framework for Feeder Location Evaluation), a methodology specifically 

designed to assess the feasibility and effectiveness of on-demand feeder bus services in diverse urban 

conditions7 . By leveraging spatial, socio-demographic, and transportation-specific data of the analysed 

region, the method enables the computation of various KPIs for a given area-hub combination, allowing a 

comparative analysis to identify the most suitable urban area for service implementation (Figure 18). The 

proposed key indicators capture both operational aspects of the feeder buses, such as vehicle-hours 

travelled, passenger-hours, and vehicle occupancy, as well as utility-based metrics that reflect the 

effectiveness of the overall transport system that includes feeders as first- or last-mile solutions. These are 

service attractiveness, waiting time reduction, and overall added value. 

 

Figure 18: SimFLEX computes service performance with the following methodology. For a given service area and hub 
location it uses widely available inputs (such as network graph, GTFS, population distribution and OD-matrices), and it 
runs a series of microsimulations to obtain a wide range of performance indicators. First, we sample microscopic demand 
patterns for services from macroscopic models. For each single demand realisation, we simulate the travellers learning 
process, when they experience system performance (with unknown travel times due to detours, here sampled with 
ExMAS). After stabilisation (when each travellers expectations meet the realisations), we simulate extra runs to compute 
indicators from the stabilised system. This concludes a single run of SimFLEX, which can then be replicated (for different 
realisations of the demand), or used for comparisons (between areas, hubs, parameterizations, etc.). 

Beyond evaluating feeder service effectiveness, SimFLEX is useful in comparing different urban areas, to 

introduce services where they offer the highest benefits. Additionally, it enables a sensitivity analysis of key 

performance indicators, notably those not well estimated (like an alternative specific constant or transfer 

penalty). To achieve these objectives, SimFLEX integrates a combination of computational tools, 

optimisation techniques and analytical methods that together enable a comprehensive assessment of feeder 

system performance. We propose SimFLEX as a comprehensive decision support tool developed to address 

the lack of location-specific methods to evaluate the potential impact and feasibility of novel transportation 

services. The source code for the methodology is freely accessible on GitHub and provides an adaptable 

 

 

7 Detailed description in our study Vasiutina et al., 2025 . 

https://github.com/anniutina/SUM
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5221622


 

 

    

foundation, enabling analysts to conduct analytically guided implementation decisions by simulating diverse 

scenarios, quantifying performance metrics, and analysing potential outcomes. 

3.3.1. Areas 

We focus on two revised areas: Bronowice and Skotniki (Table 16), as shown Erreur ! Source du renvoi 

introuvable.19. 

 

Figure 19: Updated Bronowice and Skotniki areas with marked address points (green) and hubs (yellow). 

Revision of areas resulted in boundary changes for address points and population data updates. Due to the 

lack of GTFS data on train departures for Krakow Mydlniki PKP, we exclude this hub as a potential hub for 

Bronowice and consider the remaining two hubs. 

Table 16: Revised areas and hubs considered 

Predefined Area Population Hub 

8 Bronowice and Bronowice Wielkie (split into two zones) 1836 
Bronowice Małe 

 Krakow Mydlniki PKP 

9 Bronowice and Bronowice Wielkie (split into two zones) 4002 

Bronowice Małe 

Bronowice SKA 

 Krakow Mydlniki PKP 

Bronowice 8390 
Bronowice Małe 

Bronowice SKA 

3 Skotniki Area 3719  Czerwone Maki P+R 

Skotniki 6070 Czerwone Maki P+R 

The basic statistics of the surveyed areas are given in Table 17. 

 

Table 17: Basic statistics of the surveyed areas. 

 

Statistics Bronowice area Skotniki area 

Number of address points 1227  1229  

Number of residents 8390  6070  

Number of planned collection points 100  83  



 

 

    

3.3.2. Methodology 

SimFLEX is an iterative framework for assessing the effectiveness of on-demand feeder bus services. (Figure 
18). It uses spatial and sociodemographic characteristics of the analysed region, along with existing 
transportation system parameters, to estimate travel demand via a discrete choice model for mode selection. 
SimFLEX is a two-loop framework: the outer loop generates multiple demand scenarios for analysis by 

sampling travel demand for feeder services, while the inner loop performs MSA iterations to model the 

traveller learning process and achieve system stabilization. First, this involves refining macroscopic data to 

generate detailed individual-level travel demand for agent-based simulations, which mimic the behaviour and 

interactions of individual agents (here, travellers). A discrete choice model allocates travellers among 

available transport modes based on utility functions that consider travel time, cost, and convenience factors. 

The daily demand for the feeder bus is computed through this mode-choice process, reflecting user 

preferences in response to service attributes and learning. For each demand realization (i.e., a single 

sampled demand scenario), the inner loop simulates the traveller learning process, updating travel time 

expectations and mode choices until system stabilization is achieved. Consequently, dependent on travel 

times, utilities mode choice probabilities are recalculated on each iteration of MSA for travellers selecting 

shared rides. The attributes of shared trips, including travel times, are obtained using the ExMAS framework. 

For trips performed by public transport, the trip parameters, such as duration, walking distance, transit, and 

waiting time - are obtained using the OTP software.  

Once the system stabilizes, we perform additional iterations to estimate key performance indicators. In the 

outer loop, we perform multiple demand replications to capture variability in traveller behaviour and network 

parameters. These resulting metrics are then used to assess the effectiveness of introducing the feeder 

services in different urban areas and to conduct the comparative analysis. 

SimFLEX is designed to be adaptable, allowing researchers and practitioners to modify input data (such as 

varying transit schedules, population distributions, and operational constraints), assumptions, and models 

based on specific case study requirements. The modular framework enables integration with alternative 

demand estimation techniques, learning methods, and routing algorithms, making it applicable to various 

urban settings and transportation networks. To ensure reproducibility, the complete SimFLEX 

implementation, including input data and computational functions, is publicly available in the GitHub 

repository. This allows for method validation, extensions, and further experimentation by researchers, urban 

planners, and policymakers interested in evaluating feeder service feasibility in different cities. 

3.3.3. Performance indicators 

After the system reaches a stable state, we perform additional iterations (days) to obtain statistically reliable 

performance metrics: operational KPIs for the feeder bus service and effectiveness indicators for the 

integrated feeder-public transport system. Specifically, we derive the following indicators: 

- Decrease in total vehicle-hours (ΔTv): quantifies the change in efficiency for service operators by 

measuring the reduction in total vehicle operation time due to ride-pooling. 

- Increase in total passenger-hours travelled (ΔTp): reflects the trade-off for travellers by indicating any 

increase in total travel time when shifting from solo rides to pooled services. 

- Vehicle occupancy (O): assesses pooling effectiveness by comparing passenger hours with vehicle-

hours, illustrating how efficiently shared rides utilize vehicle capacity.  

To evaluate the overall effectiveness of the integrated feeder transit system and conduct a comparative 

analysis of urban areas, we incorporate the utilities for the feeder (UF) and the direct public transport trip 

options (UPT
OD), as well as the reduction in waiting time for public transport: for the feeder (twt

HD) and for the 

public transport trip option (twt
OD). Based on these SimFLEX outputs, we compute the following integrated 

system effectiveness indicators, expressed as average values over the n-th demand sample replication: 

https://github.com/anniutina/SUM


 

 

    

- Attractiveness of the integrated feeder service: measuring the relative desirability of the travel options 

based on the utility differences; 

- Reduction in waiting time for public transport: evaluates the effect of implementing feeder services 

on public transport waiting times; 

- Overall added value: provides a quantitative measure of the improvement in traveller experience 

when using the new service (Cats et al., 2022).  

The proposed performance metrics are subsequently used for comparative analyses across different urban 

areas. This analysis helps identify locations where the introduction of feeder services would provide the 

greatest improvements in public transportation efficiency, accessibility, and overall user satisfaction. 

3.3.4. Analysis of system stabilisation and traveller learning 

Figure 20 illustrates a representative simulation run, depicting the stabilization of the average expected travel 

times through MSA iterations for Bronowice and Skotniki areas. The figure provides a visual representation 

of the learning process for a single-demand replication, showing how expected travel times stabilize over the 

iterations. 

 

Figure 20: Stabilization of the expected average travel times through MSA over 30 iterations for Bronowice and Skotniki 
areas. The initial travel times at the first iteration correspond to the raw travel times estimated for solo rides, before any 
learning or adaptation occurs. Travel times initially vary as travellers adapt to the new feeder bus system, but gradually 
stabilize as the system converges. Both areas show a similar trend of initial variation followed by convergence, though 
the specific travel times and rates of convergence differ. The dashed lines represent the mean value of the convergence 
iteration, for Bronowice in blue and for Skotniki in orange, indicating the average convergence iteration around 16 (the 
mean over 100 demand replications) 

3.3.5. Feeder choice probabilities 

Figure 21 presents the probability distribution of choosing the feeder bus integrated with the public transport 

system for a single demand replication for the analysed areas, Bronowice and Skotniki. In both regions, a 

substantial portion of travellers exhibit a low probability of choosing the feeder service, with approximately 

57% in Bronowice and 51% in Skotniki, indicating that in many cases, no travellers opted for the feeder bus 

service in the analysed replication. On the other hand, a notable fraction of travellers (around 17% in Skotniki 

and 10% in Bronowice) show a high probability (close to 1) of choosing the feeder service, with a slightly 

greater prevalence in Skotniki. The remaining probability values are distributed across intermediate ranges, 

with Skotniki displaying a slightly higher frequency of probabilities above 0.5. Additionally, the mean 

probability of the feeder choice, marked by dashed lines, is lower in Bronowice (around 0.23) compared to 

Skotniki (nearly 0.35), suggesting that on average the feeder service is a more attractive option for travellers 

in Skotniki. 

https://doi.org/10.1371/journal.pone.


 

 

    

 

Figure 21: The probability distribution of feeder bus service choice in Bronowice and Skotniki for a single demand 
replication. The figure shows that in Bronowice, slightly more than half of travellers (57%) and in Skotniki roughly half 
(51%) have almost 0% probability of choosing the feeder. Meanwhile, a tenth of travellers (10%) in Bronowice and 
approximately a sixth (17%) in Skotniki have a 100% probability of choosing the feeder. The mean probability of feeder 
choice is 0.23 for Bronowice and 0.35 for Skotniki, as indicated by the dashed lines. These values highlight differences 
in the feeder service adoption between the two areas in this single demand scenario. 

 

3.3.6. Comparative analysis of study areas 

The primary metrics that describe the effectiveness of the feeder system integrated with public transport, 

used for Bronowice and Skotniki comparison (e.g., the probability of choosing feeders, feeder attractiveness, 

reduction in waiting time, overall added value along with their respective variances) are summarized in Table 

18, while their distributions are depicted in Fig. 22. These indicators are the mean values of 100 demand 

replications, calculated after the system's stabilization (30 MSA iterations and an additional 20 iterations). 

Table 18: Evaluation of feeder service potential: Comparison of Bronowice and Skotniki feeder system level indicators 

comparison 

 



 

 

    

 

Figure 22: Distribution of the KPIs of the integrated feeder system across the 100 demand replications with their mean 
values (illustrated with dashed lines) for the Bronowice and Skotniki areas. Skotniki generally exhibits higher (less 
negative) values for feeder attractiveness, suggesting that it is perceived as more attractive compared to Bronowice. In 
terms of waiting-time reduction, Bronowice shows a distribution concentrated at higher positive values, indicating a more 
significant reduction in waiting times. For added value, Skotniki has a higher mean value and a narrower data spread, 
implying a slightly better added value compared to Bronowice, which shows a similar spread but with slightly lower mean 
values. Finally, the histograms of the probability of choosing the feeder indicate that Skotniki has a distribution skewed 

towards higher probabilities, suggesting a greater likelihood of choosing the feeder service compared to Bronowice. 

For our comparative analysis, we also investigate the operational performance of the feeder buses across 

the analysed areas, Bronowice and Skotniki, by using KPIs derived with the ExMAS algorithm. Based on 

simulation results obtained under the configuration, the histograms (Fig. 23) depict the distributions of relative 

KPI changes for the feeder bus service in comparison to the solo ride baseline (calculated based on Shulika 

et al.2024). 

 

Figure 23: Distributions of relative changes in KPIs (with mean values depicted by dashed lines) following the 
implementation of feeder bus services compared to solo rides in Bronowice and Skotniki. For vehicle-hours travelled, 
Bronowice displays a distribution with a higher mean increase, indicating a greater impact on vehicle operation. Similarly, 
Bronowice vehicle occupancy is higher on average in Bronowice, suggesting better utilisation of vehicle capacity. 
Conversely, for passenger-hours travelled, Skotniki shows a distribution with a higher mean increase, indicating a greater 
impact on overall passenger travel time despite the similar distribution shapes. These differences highlight the varying 
effects of the feeder system across the two areas, with Bronowice experiencing improved vehicle utilization and Skotniki 
showing a larger increase in passenger travel time. 

 

https://doi.org/10.1016/j.jtrangeo.2023.103767
https://doi.org/10.1016/j.jtrangeo.2023.103767


 

 

    

3.3.7. Sensitivity analysis of KPIs to ASC variations 

A significant advantage of the SimFLEX methodology is that it enables the analysis of the sensitivity of 

outputs to variations in the alternative-specific constant. ASCs represent the average effect of unobserved 

factors on mode choice utility, and they are typically unknown a priori for new service implementations.  

To conduct the sensitivity analysis, we perform simulations with five area sample replications for each ASC 

value (N = 5). We vary the ASC parameter across a range from 0 to 5, with 50 evenly spaced points sampled 

from a uniform distribution within this interval. This approach allows for the exploration of a wide range of 

potential user preferences and assessing the stability and reliability of method outputs. 

The results of this analysis, presented in Fig. 24, reveal distinct patterns in how the choice of ASC affects 

the primary KPIs across the two analysed areas: Bronowice and Skotniki. 

 

Figure 24: The results remain consistent when the behavioural parameter (ASC) varies. The impact of ASC variations 

(ranging from 0 to 5) on four key metrics: feeder attractiveness, reduction in public transport waiting times, overall added 

value, and the probability of choosing the feeder service. Each data point represents the average value of the respective 

metric across five replications per ASC value, with solid lines indicating trends for each area 

3.4. Discussion 

Our first analysis indicated Bronowice (area 9) due to its larger population (Table 15). With the fixed level of 

the population fraction interested in the service, the demand for SUM was significantly higher. For the revised 

areas, the difference between the number of inhabitants decreased. Additionally, we conducted more 

detailed analyses considering the full paths from the beginning to the end of the journey. In the current form, 

we can indicate that Skotniki is the area with greater potential, based on the following received data. 

In the comparative analysis of the two revised areas (Bronowice and Skotniki), we took into account four 

main measures: the probability of using NSM, the attractiveness of NSM, reduction in waiting time for PT, 

and added value (Table 16). 

A quantitative comparison of the KPIs of the integrated feeder transit system between Bronowice and Skotniki 

reveals significant differences in service potential (Table 16). Skotniki exhibits a higher average probability 



 

 

    

of feeder service selection (0.265 compared to 0.248 in Bronowice) and a greater (approximately by 30%) 

feeder service attractiveness (-1.966 compared to -2.690 in Bronowice). Furthermore, Skotniki demonstrates 

a higher added value (up to 7%) (0.600 compared to 0.568 in Bronowice). In contrast, Bronowice shows 

substantially greater potential for reducing traveller waiting times (nearly by 77%), with an average reduction 

of 65.904 seconds compared to 28.925 seconds in Skotniki. These numerical differences support the data 

in Figure 22, highlighting the distinct advantages and challenges of feeder service implementation in each 

area. 

The analysis of KPIs reveals distinct patterns in the potential for on-demand feeder bus service 

implementation in Bronowice and Skotniki (Fig. 22). Skotniki demonstrates a higher average probability of 

users choosing the feeder service, coupled with a greater service attractiveness and added value. 

Conversely, Bronowice exhibits a significant potential for reducing traveller waiting times for public transport. 

However, the lower average probability of feeder service selection and the distribution of choice probabilities 

suggest that the service may face challenges in attracting users. The concentration of zero-probability values 

in Bronowice indicates that a substantial portion of the population may consistently opt for alternative modes 

of transport. Based on these findings, Skotniki appears to be a more suitable area for the feeder service 

implementation. The higher average probability of feeder selection, greater attractiveness, and added value 

suggest a greater likelihood of successful integration and user adoption of feeders in this area. 

Based on the analysis of operational KPIs, the implementation of feeder bus services in Bronowice and 

Skotniki reveals distinct impacts. Bronowice exhibits a higher average vehicle occupancy and increased 

vehicle-hours travelled. However, Skotniki shows a larger increase in passenger-hours travelled, suggesting 

potentially greater delays for travellers. Therefore, while Bronowice achieves better vehicle utilization, 

Skotniki results in an increased time burden for travellers. In terms of operational efficiency, neither area 

clearly outperforms the other, as each demonstrates a trade-off between vehicle utilization and passenger 

travel time. 

To further assess the stability and reliability of our method outputs, we conduct a sensitivity analysis across 

a range of ASC values. The results consistently confirm Skotniki as the superior candidate for the feeder 

service implementation across all ASC variations (Fig. 24). This consistency strengthens our findings that 

Skotniki's advantages result from differences in travel demand and service characteristics, not specific ASC 

assumptions. 

However, the decision whether Bronowice or Skotniki is a more suitable area for the implementation of the 

feeder service depends on the priorities of the transportation authorities and the specific goals of the 

deployment of the service. If minimizing travel time is the primary objective, Bronowice appears to be the 

preferable choice. However, this choice can cause lower overall service adoption of services and potential 

long-term benefits due to lower attractiveness of services.  

Conversely, if increasing accessibility and consistent service usage are prioritized, Skotniki is a more 

appropriate choice. The higher feeder service attractiveness and the added value in Skotniki suggest a 

greater likelihood of consistent ridership and integration with the existing transportation system. The 

simulation code and input data are available in the repository Github repository. 

 

 

  

https://github.com/anniutina/SUM/tree/main


 

 

    

3.5. How to use it 

A link to the code repository: SimFLEX: Methodology for comparative analysis of urban areas for 

implementing new on-demand feeder bus services 

 

Getting Started 

• Prepared the data (see datasets in Defining a Use Case). 

• Start the OpenTripPlanner server before running the framework 

• Define initial experiment configurations (the default file with configurations) 

Defining a Use Case 

Each use case must include the following datasets (in the `data/` directory): 

• graphml file with road network graph (`Krakow.graphml`) 

• Zoning data: city zones in `.geojson` format (e.g., `krk_zones.geojson`), centroids of the zones (e.g., 

`krk_centroid.geojson`) 

• Urban area boundaries for analysis (e.g., `sum_areas_B+S.shp`) 

• Demographics: CSV with address and population (e.g., `krk_demographic.csv`) 

• Origin–Destination Matrix: OD demand (e.g., `krk_ODM.xlsx`), defining travel demands between 

zones 

• Feeder hub coordinates: a dictionary with `(lat, lon)` tuples for each area 

• zip with GTFS file for the area and date that we query (e.g., `gtfs.zip`) 

Running Simulations 

Once the files are ready and OTP is running, use the following steps in `simulations.ipynb`: 

1. Load the street network and configuration file 

2. Load and preprocess input data: 

• city zones, centroids, areas 

• demographics  

• OD matrices 

3. Run the main simulation: 

 
 
  

https://github.com/anniutina/SimFLEX
https://github.com/anniutina/SimFLEX


 

 

    

Interpreting Results 
 
Each simulation outputs key travel and behavioural indicators: 
 
Table 19: SimFLEX outputs - key travel and behavioural indicators  

Metric Description 

`tw_PT_OD`, `tw_PT_HD` Waiting times for PT from O to D, from H to D 

`u_PT_OD`, `u_SUM_OD` Utilities of PT-only and feeder alternatives 

`p_SUM` Probability of choosing the feeder option 

`ΔA` Feeder attractiveness 

`ΔV` Added value 

`avg_ts_pt`, `avg_ts_sh Average travel times by mode across iterations 

`converged_is` Convergence iteration index per run 

`kpis_res` ExMAS-based KPIs such as occupancy and vehicle hours 

 
You can compute per-area: 

• Averages and variances of indicators 

• KPIs: passenger hours, vehicle hours, occupancy (via `ExMAS`) 

• ASC sensitivity over multiple replications 

• Travel time stabilization using the method of successive averages (MSA) 

Output Files 

• `results/main_results/*.csv`: average results, KPIs, ASC batch runs 

• `results/images/*.png`: visualizations 

Visualizations: 

• KPI histograms by area 

• Probability distribution of feeder choice 

• ASC sensitivity analysis 

• MSA convergence plots  

Based on obtained results compare feeder service performance for each preselected area to interpret 
which areas benefit most from feeder deployment. 
 

  



 

 

    

4. Conclusions 

This deliverable presents two complementary frameworks for analysing ride-pooling services. The 

simulation-optimization framework is tailored for designing and operating ride-pooling fleets, while the 

ExMAS-SimFLEX framework supports planning the integration of on-demand feeder services with existing 

public transit systems. 

Both frameworks have been applied in real-world contexts. The simulation-optimization framework was 

applied to the Yuvalim-Ganim neighbourhood in Jerusalem, with preliminary results presented to Israel’s 

National Public Transit Authority to inform future deployment. The analysis underscores the importance of 

carefully defining service areas when operating with small fleets, confirms that low pooling demand can be 

met with smaller vehicles, and reveals an increasing returns effect – where fleet expansion significantly 

increases pooling and the number of served requests – highlighting the need for sufficiently large fleets to 

enable effective pooling. 

The ExMAS-SimFLEX framework was deployed in Krakow to guide the selection of neighbourhoods for initial 

feeder service implementation. The analysis identified Skotniki and Bronowice as strong candidates, with 

Skotniki emerging as the more promising option due to its higher service attractiveness, user uptake, and 

added value – factors that support long-term adoption and integration. Although Bronowice showed greater 

potential for reducing waiting times and better vehicle efficiency, its lower overall service appeal may limit its 

effectiveness. 

Both case studies are ongoing, and comprehensive findings will be included in the Living Labs deliverables 

at the conclusion of the SUM project. 
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